实数x、y满足x2+xy+y2=2,记u=x2-xy+y2,则u的取值范围是A.K>1 B.-1<k<1 C.k<-1 D.k=1选项发错了 A.2/3≤u≤6 B.2/3≤u≤2 C.1≤u≤6 D.1≤u≤2
来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 09:49:07
xR]KA+Lv^T-Wea~'v)mVEd̸yڿ$.ՇBRas̹}v]"T(@ v'b\dc7.mYkMT+<=.ߙ9o98ɧ~wөxP
CuvRͻ`5\ڷ
实数x、y满足x2+xy+y2=2,记u=x2-xy+y2,则u的取值范围是A.K>1 B.-1<k<1 C.k<-1 D.k=1选项发错了 A.2/3≤u≤6 B.2/3≤u≤2 C.1≤u≤6 D.1≤u≤2
实数x、y满足x2+xy+y2=2,记u=x2-xy+y2,则u的取值范围是
A.K>1 B.-1<k<1 C.k<-1 D.k=1
选项发错了 A.2/3≤u≤6 B.2/3≤u≤2 C.1≤u≤6 D.1≤u≤2
实数x、y满足x2+xy+y2=2,记u=x2-xy+y2,则u的取值范围是A.K>1 B.-1<k<1 C.k<-1 D.k=1选项发错了 A.2/3≤u≤6 B.2/3≤u≤2 C.1≤u≤6 D.1≤u≤2
x2+xy+y2=(x+y)2-xy=2,所以(x+y)2=2+xy.
2|xy|+xy≤x2+xy+y2=2,所以0≤xy≤2/3.或者-2≤xy≤0
u=x2-xy+y2=(x+y)2-3xy=2-2xy,
0≤xy≤2/3时,2/3≤u≤2 ,
-2≤xy≤0时,2≤u≤6
因此选A
假设X,Y,Z都是正数 因为X2+Y2+Z2=1,所以(X2+Y2)+(X2+Z2)有最小值-1 XY+YZ+ZX的取值范围是[-1,1]。 (x+y)2+(y+z)
当xy>0时,x^2+y^2>=2xy,可推出xy<2/3,当xy<0时,x^2+y^2>=-2xy,推出xy>=-2,即-2<=xy<=2/3又x^2+y^2=u+xy代入x^2+y^2+2xy=2得u+2xy=2所以2/3<=u<=6