已知sinα是方程5x²-7x-6= 0的根〔sin(-α-3/2π)sin(3/2π-α)*tan ^2(2π-α)〕/〔cos(π/2-α)cos(π/2 +α)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 17:39:30
已知sinα是方程5x²-7x-6= 0的根〔sin(-α-3/2π)sin(3/2π-α)*tan ^2(2π-α)〕/〔cos(π/2-α)cos(π/2 +α)
x){}K3m|6ci;6PS6455U0x>قӡ{n{:!"`P(Ug =nԜ_ =ߠoF6IE$/|jXLôBXSBH*Ra tB!$t׀8A<D80)}. Ăk( pn#pn>F0pn#T-X@Ɖ~1Kb Df,D@kkI yvHKG

已知sinα是方程5x²-7x-6= 0的根〔sin(-α-3/2π)sin(3/2π-α)*tan ^2(2π-α)〕/〔cos(π/2-α)cos(π/2 +α)
已知sinα是方程5x²-7x-6= 0的根
〔sin(-α-3/2π)sin(3/2π-α)*tan ^2(2π-α)〕/〔cos(π/2-α)cos(π/2 +α)

已知sinα是方程5x²-7x-6= 0的根〔sin(-α-3/2π)sin(3/2π-α)*tan ^2(2π-α)〕/〔cos(π/2-α)cos(π/2 +α)
5x²-7x-6=0
(5x+3)(x-2)=0
x=-3/5 x=2>1
取sinα=-3/5
cos(2π-α)cos(π+α)tan²(2π-α)/sin(π-α)sin(2π-α)cot(π-α)
=-cosαcosαtan²α/sinαsinαcotα
=-sinα/cosα=-sinα/[√(1-cosα²)]
=±(3/5)/(4/5)
=±3/5