已知函数f(x)=x²+a/x(x≠0),(常数a∈R)(1)若函数f(x)为偶函数,求a. (2)当常数a≤16时,求证:函数f(x)在[2,+∞)上单调递增.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 00:38:44
已知函数f(x)=x²+a/x(x≠0),(常数a∈R)(1)若函数f(x)为偶函数,求a. (2)当常数a≤16时,求证:函数f(x)在[2,+∞)上单调递增.
xTnA~ML Ѩ,mz!z3 aEh`bFvBwfWgfv`f7dtDJZ涎綡۷(9,tnQ$9֡w w= 8jP۱@3nT ǵxw} <

已知函数f(x)=x²+a/x(x≠0),(常数a∈R)(1)若函数f(x)为偶函数,求a. (2)当常数a≤16时,求证:函数f(x)在[2,+∞)上单调递增.
已知函数f(x)=x²+a/x(x≠0),(常数a∈R)
(1)若函数f(x)为偶函数,求a.
(2)当常数a≤16时,求证:函数f(x)在[2,+∞)上单调递增.

已知函数f(x)=x²+a/x(x≠0),(常数a∈R)(1)若函数f(x)为偶函数,求a. (2)当常数a≤16时,求证:函数f(x)在[2,+∞)上单调递增.
f(x)是偶函数,则有f(-x)=(-x)^2+a/(-x)=f(x)=x^2+a/x
2a/x=0
a=0
(2)设2≤x1<x2
则f(x1)-f(x2)=(x1^2+a/x1)--(x2^2+a/x2)
=(x1+x2)(x1-x2)+a(x2-x1)/x1x2
=(x2-x1)[a/(x1x2)-(x1+x2]
x1x2>4
a

函数为偶函数f(-x)=f(x) 代进去。则A=0
单调性求函数的导数,=2x-a/x的平方 单调递增,导数》=0

(1)f(-x)=f(x)
a=0
(2)对f(x)求导
得2x-a/x²
寻找极值点 令2x-a/x²=0 x不等于0 可以乘过去
找出极值点为:x0=(a/2)开3次方
发现极值点左边导数小于0,单调递减。右边大...

全部展开

(1)f(-x)=f(x)
a=0
(2)对f(x)求导
得2x-a/x²
寻找极值点 令2x-a/x²=0 x不等于0 可以乘过去
找出极值点为:x0=(a/2)开3次方
发现极值点左边导数小于0,单调递减。右边大于0单调增加
当a=16时,极值点为2。函数在2到正无穷上为单调递增函数
当小于16时,极值点往左移,所以函数在2到正无穷上依然为单调增加
所以,结论

收起