如图,梯形ABCD中,AD∥BC,∠DCB=45°,CD=2,BD⊥CD,过点C作CE⊥AB于E,交对角线BD于F,点G为BC中点,连接EG、AF.(1)求EG的长(2)求证:CF=AB+AF

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 06:35:36
如图,梯形ABCD中,AD∥BC,∠DCB=45°,CD=2,BD⊥CD,过点C作CE⊥AB于E,交对角线BD于F,点G为BC中点,连接EG、AF.(1)求EG的长(2)求证:CF=AB+AF
xTn@c/(>FHUIFUPTEHm@$DSS~:ޤ=q@d7f]גO'=%קs̚?\p,獑OGxx1g ˏci^nsyw9in-';鷆Ϗ_>jd^Nd\V?z1k3-+!en%gTCI=oJl>r夥[қZJZ"-4"2/~[ fÐݬ=$hYRURCyCӌzVrE`Y=DP0}NJv%hsdpT\e%V/5̺co"Ud(ה4-K'ʁY6VC?{k~~$ρÖ@} : hdRT̈́:)ʕDUD֙@U־䟪[`N6fznVLzNjrCG֏\wVd [)Ck!Mq6yӷM

如图,梯形ABCD中,AD∥BC,∠DCB=45°,CD=2,BD⊥CD,过点C作CE⊥AB于E,交对角线BD于F,点G为BC中点,连接EG、AF.(1)求EG的长(2)求证:CF=AB+AF
如图,梯形ABCD中,AD∥BC,∠DCB=45°,CD=2,BD⊥CD,过点C作CE⊥AB于E,交对角线BD于F,点G为BC中点,
连接EG、AF.(1)求EG的长(2)求证:CF=AB+AF

如图,梯形ABCD中,AD∥BC,∠DCB=45°,CD=2,BD⊥CD,过点C作CE⊥AB于E,交对角线BD于F,点G为BC中点,连接EG、AF.(1)求EG的长(2)求证:CF=AB+AF
∵BD⊥CD,∠DCB=45°,
∴∠DBC=45°=∠DCB,∴BD=CD=2,在Rt△BDC中BC= DB2+CD2 =2 2 ,
∵CE⊥BE,点G为BC的中点,
∴EG=1 2 BC= 2 .
答:EG的长是 2 .
(2)证明:在线段CF上截取CH=BA,连接DH,
∵BD⊥CD,BE⊥CE,
∴∠EBF+∠EFB=90°,∠DFC+∠DCF=90°,
∵∠EFB=∠DFC,
∴∠EBF=∠DCF,
∵DB=CD,BA=CH,
∴△ABD≌△HCD,
∴AD=DH,∠ADB=∠HDC,
∵AD∥BC,
∴∠ADB=∠DBC=45°,
∴∠HDC=45°,∴∠HDB=∠BDC-∠HDC=45°,
∴∠ADB=∠HDB,
∵AD=HD,DF=DF,
∴△ADF≌△HDF,
∴AF=HF,
∴CF=CH+HF=AB+AF,
∴CF=AB+AF.
(解法二)证明:延长BA与CD延长线交于M,
∵△BFE和△CFD中,
∠BEF=∠CDF=90°,∠BFE=∠CFD,
∴∠MBD=∠FCD,
∵△BCD中∠DCB=45°,BD⊥CD,
∴BD=CD,
△BMD和△CFD中,
∵BD=CD,∠BDM=∠CDF=90°,∠MBD=∠FCD,
∴△BMD≌△CFD,
∴CF=BM=AB+AM,DM=DF,
∵AD∥BC,∠ADF=∠DBC=45°∠BDM=90°,
∴∠ADM=∠ADF=45°,
∴△AFD≌△AMD,
∴AM=AF,
∴CF=BM=AB+AM=AB+AF,即CF=AB+AF.

EG=BG=CG=根号2