已知ω>0,向量m=(√3sinωx,cosωx),向量n=(cosωx,-cosωx),且f(x)=m·n+1/2且f(x)=m·n+1/2的最小正周期π(1)求f(x)的解析式;(2)已知a,b,c分别为△ABC内角A,B,C所对的边,且a=√19,c=3,又cosA恰是f(x)在[π/12,2π/3]
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 04:49:27
已知ω>0,向量m=(√3sinωx,cosωx),向量n=(cosωx,-cosωx),且f(x)=m·n+1/2且f(x)=m·n+1/2的最小正周期π(1)求f(x)的解析式;(2)已知a,b,c分别为△ABC内角A,B,C所对的边,且a=√19,c=3,又cosA恰是f(x)在[π/12,2π/3]
已知ω>0,向量m=(√3sinωx,cosωx),向量n=(cosωx,-cosωx),且f(x)=m·n+1/2
且f(x)=m·n+1/2的最小正周期π
(1)求f(x)的解析式;
(2)已知a,b,c分别为△ABC内角A,B,C所对的边,且a=√19,c=3,又cosA恰是f(x)在[π/12,2π/3]上的最小值,求b及△ABC的面积.
已知ω>0,向量m=(√3sinωx,cosωx),向量n=(cosωx,-cosωx),且f(x)=m·n+1/2且f(x)=m·n+1/2的最小正周期π(1)求f(x)的解析式;(2)已知a,b,c分别为△ABC内角A,B,C所对的边,且a=√19,c=3,又cosA恰是f(x)在[π/12,2π/3]
⑴f(x)=m•n+1/2
=√3sinωxcosωx-cos²ωx+1/2
=√3/2•sin2ωx-1/2•cos2ωx-1/2+1/2
=sin(2ωx-π/6),
∵ω>0,
∴T=π=2π/2ω => ω=1,
∴f(x)=sin(2x-π/6);
---------------------------------------------------------------------------------------------------------------------
⑵∵x∈[π/12,2π/3],
∴2x-π/6∈[0,7π/6],
∴f(x)∈[-1/2,1],
∴cosA=-1/2=(b²+c²-a²)/2bc => b=2,
∵0