如图平行四边形ABCD的顶点A.B的坐标为A(-1,0),B(0,-2),顶点C.D在双曲线y=k/x上,边AD交y轴于点E,且四边形BCDE的面积是三角形abe的5倍,求k值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 05:47:23
如图平行四边形ABCD的顶点A.B的坐标为A(-1,0),B(0,-2),顶点C.D在双曲线y=k/x上,边AD交y轴于点E,且四边形BCDE的面积是三角形abe的5倍,求k值
如图平行四边形ABCD的顶点A.B的坐标为A(-1,0),B(0,-2),顶点C.D在双曲线y=k/x上,边AD交y轴于点E,且四边形
BCDE的面积是三角形abe的5倍,求k值
如图平行四边形ABCD的顶点A.B的坐标为A(-1,0),B(0,-2),顶点C.D在双曲线y=k/x上,边AD交y轴于点E,且四边形BCDE的面积是三角形abe的5倍,求k值
嘿嘿,都想到网上求助了.“BCDE的面积是三角形abe的5倍”其实是想告诉你那两条线段的比值为1:2,然后X型相似,得点D得横坐标为2,过点D做x轴垂线,过点C做y轴垂线,然后全等,设D(2,b),则C(2+1,b-2),在同一双曲线上,所以2b=3(b-2),b=6,所以k=2*6=12.
图呢?
?????????????
答:如图,过C、D两点作x轴的垂线,垂足为F、G,DG交BC于M点,过C点作CH⊥DG,垂足为H,
∵CD∥AB,CD=AB,
∴△CDH≌△ABO,
∴CH=AO=1,DH=OB=2,设C(m+1,n),D(m,n+2),
则(m+1)n=m(n+2)=k,
解得n=2m,
设直线AD解析式为y=ax+b,将A、D两点坐标代入得
,
全部展开
答:如图,过C、D两点作x轴的垂线,垂足为F、G,DG交BC于M点,过C点作CH⊥DG,垂足为H,
∵CD∥AB,CD=AB,
∴△CDH≌△ABO,
∴CH=AO=1,DH=OB=2,设C(m+1,n),D(m,n+2),
则(m+1)n=m(n+2)=k,
解得n=2m,
设直线AD解析式为y=ax+b,将A、D两点坐标代入得
,
解得 ,
∴y=2x+2,E(0,2),BE=4,
∴S△ABE= ×BE×AO=2,
∵S四边形BCDE=5S△ABE,
∴S△ABE+S四边形BEDM=10,
即2+4×m=10,
解得m=2,
∴n=2m=4,
∴k=(m+1)n=3×4=12.
收起
12 如图,过C、D两点作x轴的垂线,垂足为F、G,DG交BC于M点,过C点作CH⊥DG,垂足为H,
∵CD∥AB,CD=AB,
∴△CDH≌△ABO(AAS),
∴CH=AO=1,DH=OB=2,设C(m+1,n),D(m,n+2),
则(m+1)n=m(n+2)=k,
解得n=2m,
设直线AD解析式为y=ax+b,将A、D两点坐标代入得
全部展开
12 如图,过C、D两点作x轴的垂线,垂足为F、G,DG交BC于M点,过C点作CH⊥DG,垂足为H,
∵CD∥AB,CD=AB,
∴△CDH≌△ABO(AAS),
∴CH=AO=1,DH=OB=2,设C(m+1,n),D(m,n+2),
则(m+1)n=m(n+2)=k,
解得n=2m,
设直线AD解析式为y=ax+b,将A、D两点坐标代入得
,
解得 ,
∴y=2x+2,E(0,2),BE=4,
∴S△ABE= ×BE×AO=2,
∵S四边形BCDE=5S△ABE,
∴S△ABE+S四边形BEDM=10,
即2+4×m=10,
解得m=2,
∴n=2m=4,
∴k=(m+1)n=3×4=12.
收起
我也在找这道题 楼上的y=2x+2怎么得到的 理解不到啊 哪来的条件 虽然你的答案对了
我也在找这道题,,
我来试着为您解答。
分析:分别过C、D作x轴的垂线,垂足为F、G,过C点作CH⊥DG,垂足为H,根据CD∥AB,CD=AB可证△CDH≌△ABO,则CH=AO=1,DH=OB=2,由此设C(m+1,n),D(m,n+2),C、D两点在双曲线y= kx上,则(m+1)n=m(n+2),解得n=2m,设直线AD解析式为y=ax+b,将A、D两点坐标代入求解析式,确定E点坐标,求S△ABE,根据...
全部展开
我来试着为您解答。
分析:分别过C、D作x轴的垂线,垂足为F、G,过C点作CH⊥DG,垂足为H,根据CD∥AB,CD=AB可证△CDH≌△ABO,则CH=AO=1,DH=OB=2,由此设C(m+1,n),D(m,n+2),C、D两点在双曲线y= kx上,则(m+1)n=m(n+2),解得n=2m,设直线AD解析式为y=ax+b,将A、D两点坐标代入求解析式,确定E点坐标,求S△ABE,根据S四边形BCDE=5S△ABE,列方程求m、n的值,根据k=(m+1)n故答案为:12.求解.
如图,过C、D两点作x轴的垂线,垂足为F、G,DG交BC于M点,过C点作CH⊥DG,垂足为H,
∵CD∥AB,CD=AB,
∴△CDH≌△ABO(AAS),
∴CH=AO=1,DH=OB=2,设C(m+1,n),D(m,n+2),
则(m+1)n=m(n+2)=k,
解得n=2m,
设直线AD解析式为y=ax+b,将A、D两点坐标代入得
{-a+b=0ma+b=2m+2,
解得 {a=2b=2,
∴y=2x+2,E(0,2),BE=4,
∴S△ABE= 12×BE×AO=2,
∵S四边形BCDE=5S△ABE,
∴S△ABE+S四边形BEDM=10,
即2+4×m=10,
解得m=2,
∴n=2m=4,
∴k=(m+1)n=3×4=12.
故答案为:12.
收起