已知a,b,c是正数,求证a^2a*b^2b*c^2c>=a^(b+c)*b^(c+a)*c^(a+b)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 03:30:07
已知a,b,c是正数,求证a^2a*b^2b*c^2c>=a^(b+c)*b^(c+a)*c^(a+b)
xS]KA+2]wIZl!ۤп l|OZ%UhB/šh ش}/[|g990N5w~ɻN&Xi^cҸAu@5j0akx2:3{Op?? rYp o\;b.h_ %Һߔ1

已知a,b,c是正数,求证a^2a*b^2b*c^2c>=a^(b+c)*b^(c+a)*c^(a+b)
已知a,b,c是正数,求证a^2a*b^2b*c^2c>=a^(b+c)*b^(c+a)*c^(a+b)

已知a,b,c是正数,求证a^2a*b^2b*c^2c>=a^(b+c)*b^(c+a)*c^(a+b)
这道题是《不等式选讲》里的习题吧,答案见这里:
http://hi.baidu.com/%CC%EC%CF%C2%BB%E1%CE%DE%C3%FB/album/item/60a043444902fd0fcefca35f.html#IMG=60a043444902fd0fcefca35f

证明 不妨设a≥b≥c>0,则
(a^(2a)*b^(2b)*c^(2c))/(a^(b+c)*b^(c+a)*c^(a+b))
=(a^a*b^b*c^c)/(a^((b+c)/2)*b^((c+a)/2)*c^((a+b)/2))
=(a^((a-b)/2+(a-c)/2))*(b^((b-c)/2+(b-a)/2))*(c^((c-a)/2+(c-b)/2))

全部展开

证明 不妨设a≥b≥c>0,则
(a^(2a)*b^(2b)*c^(2c))/(a^(b+c)*b^(c+a)*c^(a+b))
=(a^a*b^b*c^c)/(a^((b+c)/2)*b^((c+a)/2)*c^((a+b)/2))
=(a^((a-b)/2+(a-c)/2))*(b^((b-c)/2+(b-a)/2))*(c^((c-a)/2+(c-b)/2))
=((a/b)^((a-b)/2))*((a/c)^((a-c)/2))*((b/c)^((b-c)/2))≥1
故得
a^(2a)b^(2b)c^2(2c)≥a^(b+c)b^(c+a)c^(a+b)

收起