函数f(x)=[﹙x+1﹚^2+sinx]/﹙x^2+1﹚的最大值为M,最小值为m,则M+m=?具体答案和解析

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 21:18:16
函数f(x)=[﹙x+1﹚^2+sinx]/﹙x^2+1﹚的最大值为M,最小值为m,则M+m=?具体答案和解析
xJ@_% H$F$>A7(TJbȲ`KSx[D-h/KL+xf&*]Le?gsr3Ld`>q>PierWO]\r4!hQVN+.{+wM|Y_v}S?:QEԼh!AжwBh&6Kyvfy_..|@oQ^8xY虔QB5i =w|a#`&%Z:&l鿜P.jOLS0L,P +om `Ϡ u_h8|B>3Yf@ACJ2n)wbT+% ICSR,h.

函数f(x)=[﹙x+1﹚^2+sinx]/﹙x^2+1﹚的最大值为M,最小值为m,则M+m=?具体答案和解析
函数f(x)=[﹙x+1﹚^2+sinx]/﹙x^2+1﹚的最大值为M,最小值为m,则M+m=?
具体答案和解析

函数f(x)=[﹙x+1﹚^2+sinx]/﹙x^2+1﹚的最大值为M,最小值为m,则M+m=?具体答案和解析
f(x)=[(x+1)²+sinx]/(x²+1)=1+(2x+sinx)/(x²+1)
记g(x)=(2x+sinx)/(x²+1),设g(x)的最大值为T,最小值为t
则M=1+T,m=1+t,∴M+m=2+T+t
注意g(-x)=-g(x),∴g(x)是奇函数
设g(a)=T≥g(x),对任意x∈R成立,
则-g(a)≤-g(x) => g(-a)≤g(-x),∴g(-a)为其最小值t
∴T+t=g(a)+g(-a)=g(a)-g(a)=0
即M+m=2

f(x) = 1+ (2x+sinx)/(x^2+1)
f(x) 关于(0,1)中心对称
最大值M= 1+d, 最小值=1-d
M+m = 2