设函数f(x)=-1/3x'3+x'2+(m'2-1)x,当方程f(x)=0只有一个实数,求实数m取值范围

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 18:14:15
设函数f(x)=-1/3x'3+x'2+(m'2-1)x,当方程f(x)=0只有一个实数,求实数m取值范围
x){nϦnHӨд57PK,/6ֆ25r,]C {'?n|ɎUOlcӆ=/zbTOO l? 5@+A IiWclN3+l 옂ň';z|@itdxw˳ Zi'Him uMixcg M*@\0F 1o

设函数f(x)=-1/3x'3+x'2+(m'2-1)x,当方程f(x)=0只有一个实数,求实数m取值范围
设函数f(x)=-1/3x'3+x'2+(m'2-1)x,当方程f(x)=0只有一个实数,求实数m取值范围

设函数f(x)=-1/3x'3+x'2+(m'2-1)x,当方程f(x)=0只有一个实数,求实数m取值范围
f(x)=(-1/3)x'3+x'2+(m'2-1)x=x[(-1/3)x'2+x+(m'2-1)] 当方程f(x)=0只有一个实数根,则x=0且(-1/3)x'2+x+(m'2-1)不等于0 即g(x)=(-1/3)x'2+x+(m'2-1)与X轴无交点 即△=1-4*(-1/3)*(m'2-1)<0 m^2<1/4 -1/2<m<1/2