已知函数f(x)=ax^2+(4a+2)x+4a-6,则使函数f(x)至少有一个整数零点的所有正整数a的值之和等于

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 20:22:25
已知函数f(x)=ax^2+(4a+2)x+4a-6,则使函数f(x)至少有一个整数零点的所有正整数a的值之和等于
x){}K}6uC=t&Vi9&F@~IӎO*ը|Ѿ醉t>dǪgS%^iY-:R.'6y餞k;I*P l>^2 bBMu@HԨBLb+$jUhCU((jt(DOv۬ws!XV^;[^ƺ:f$ف(

已知函数f(x)=ax^2+(4a+2)x+4a-6,则使函数f(x)至少有一个整数零点的所有正整数a的值之和等于
已知函数f(x)=ax^2+(4a+2)x+4a-6,则使函数f(x)至少有一个整数零点的所有正整数a的值之和等于

已知函数f(x)=ax^2+(4a+2)x+4a-6,则使函数f(x)至少有一个整数零点的所有正整数a的值之和等于
令f(x)=ax^2+(4a+2)x+4a-6=a(x+2)^2+(2x-6)=0
得 a=(6-2x)/(x+2)^2 (1)
因a为正整数,即a>=1
故 6-2x>=(x+2)^2, 得-3-√11