已知函数f(x)=x^3+ax^2+bx+c (1)若函数f(x)在区间【-1,0】上是单调减函数,求a^2+b^2的最小值(2)若函数f(x)的三个零点分别为 :根号(1-t),1,根号(1+t),求证:a^2=2b+3
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 01:37:09
xSMo@+akrnH6R(|4vKpM@5Q )E1wxk)r{<oޛje~-9ƹh
Zn$[aqPyxy zuE}U%zc6^DϞĺmzQ'}ОGoiujJ@x[e"8܍'O%;.<x:KR+f_1h-bJK3uFfS`[cy;7J۳ӋlRےľUb$k*-,,PaJ,e7j$f?(?:_
已知函数f(x)=x^3+ax^2+bx+c (1)若函数f(x)在区间【-1,0】上是单调减函数,求a^2+b^2的最小值(2)若函数f(x)的三个零点分别为 :根号(1-t),1,根号(1+t),求证:a^2=2b+3
已知函数f(x)=x^3+ax^2+bx+c (1)若函数f(x)在区间【-1,0】上是单调减函数,求
a^2+b^2的最小值
(2)若函数f(x)的三个零点分别为 :根号(1-t),1,根号(1+t),求证:a^2=2b+3
已知函数f(x)=x^3+ax^2+bx+c (1)若函数f(x)在区间【-1,0】上是单调减函数,求a^2+b^2的最小值(2)若函数f(x)的三个零点分别为 :根号(1-t),1,根号(1+t),求证:a^2=2b+3
(1)f'(x)=3x^2+2ax+b,
由题意f'(1)≤0,f(0)≤0,即3-2a+b≤0,b≤0
当a大于0,b小于0时,由均值不等式,√(((a^2/4)+(a^2/4)+(a^2/4)+(a^2/4)+b^2)/5)≥(2a-b)/5=3/5(注意到a>0,b<0)
所以a^2+b^2≥9/5,当且仅当a=6/5,b=-3/5时取等
当a≤0时,b≤2a-3≤-3,所以a^2+b^2≥b^2≥9>9/5,
当b=0时,a≥3/2,a^2+b^2≥9/4>9/5
综上,a^2+b^2的最小值为9/5
(2)由高次方程韦达定理,a=√(1-t)+1+√(1+t),b=√(1-t)+√(1+t)+√(1-t)(1+t),
所以a^2=1-t+1+1+t+2√(1-t)+2√(1+t)+2√(1-t)(1+t)=2b+3
证毕
已知函数F(x)=ax^3+bx^2+cx(
已知二次函数f(x)=ax^2+bx+c 讨论函数f(x)的奇偶性
已知函数:f(x)=x^3+ax^2+bx+c,过曲线y=f(x)
已知函数f(x) =ax^3 +bx +c sin x +3 ,且f(-2) =2 ,则f(2)
已知函数f(x)=x^5+ax^3+bx-8且f(-2)=10.则f(2)=
已知函数f(x)=x^5+ax^3+bx-8 qie f(-2)=10 那么f(2)等于
已知函数f(x)=ax³-x²+bx+3,且f(2)=5,求f(-2)
已知二次函数f(x)=ax^2+bx+c,若不等式f(x)
已知二次函数f(x)=ax^2-bx+1,(1)若f(x)
已知二次函数f(x)=ax^2+bx+c,且不等式f(x)
已知二次函数f(x)=ax²+bx+c
已知函数f(x)=ax²+bx,若-1
已知函数f(x)=e^x+ax^2+bx.设函数f(x)在点(t,f(t))(0
已知函数f(x)=x^3+ax^2+bx(x≠0)只有一个零点x=3.求函数f(x)的解析式
已知函数f(x)=ax³+bx+5,f(2)=3,则f(-2)=
已知函数f(x)=ax^2+bx中,f(2)=16,f(-3)=21,求a、b
已知函数f(x)=ax^3+bx+2,若f(2)=1则f(-2)值为多少?
已知函数f(x)=ax^2+bx-8,且f(-3)=8,那么f(3)等于?