已知函数f(x)满足f(x)+1=1/f(x+1) ,当x∈[0,1] 时,f(x)=x;若在区间(-1,1] 内 g(x)=f(x)-mx-m有两个零点则实数m的取值范围是?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 02:06:44
已知函数f(x)满足f(x)+1=1/f(x+1) ,当x∈[0,1] 时,f(x)=x;若在区间(-1,1] 内 g(x)=f(x)-mx-m有两个零点则实数m的取值范围是?
x͒NP_7ZB.!]BVID. AF.sZsݸ,f:Ѳ)>vQM0xr ^hPuU&ABDpԲҊ1lDͥځ3UTZr)U*)!ܬxNsgk)t/ϊ VW|[V7hڙMit`z -N̠7!wd\>K=c

已知函数f(x)满足f(x)+1=1/f(x+1) ,当x∈[0,1] 时,f(x)=x;若在区间(-1,1] 内 g(x)=f(x)-mx-m有两个零点则实数m的取值范围是?
已知函数f(x)满足f(x)+1=1/f(x+1) ,当x∈[0,1] 时,f(x)=x;若在区间(-1,1] 内 g(x)=f(x)-mx-m有两个零点
则实数m的取值范围是?

已知函数f(x)满足f(x)+1=1/f(x+1) ,当x∈[0,1] 时,f(x)=x;若在区间(-1,1] 内 g(x)=f(x)-mx-m有两个零点则实数m的取值范围是?
①x∈(0,1)时对应f(x)=x,g(x)=x-mx-m,必定有一零点,此时解得m∈(0,1/2]
②x∈(-1,0]时对应f(x)=1/(x+1)-1=-x/(x+1),g(x)=-x/(x+1)-mx-m,g(0)=-m
已知g'(x)=[-1-m(x+1)²]/(x+1)²
:m=0,g(x)↓,g(0)=0,此时有一个零点
:m>0,g(x)↓,g(0)>0,所以无零点
:m<0与①不能同时成立
所以:m∈[0,1/2]
想在网上找找求零点资料,看到了同样的问题,太好了!