集合A={x|x²-[2a+(a²+1)]x+2a(a²+1)≤0},B={x|(x-2)[x-(3a+1)]≤0}当实数a为何值时,A属于B
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 19:42:09
x){9Gꊚ
5eCskhDmDGP3B(sA+j4*t4+t5AJAr}wuMݐdǮ'{>ml6ǧ=dT?0M\ A&$@d5DYVΥF0-
``T[pUP]hgol
ͥ !P3@RpA&/5Ip[`AVBm] (@SvZp
}Kױ%Vy{ϓ]OMgX$c}yvh .
集合A={x|x²-[2a+(a²+1)]x+2a(a²+1)≤0},B={x|(x-2)[x-(3a+1)]≤0}当实数a为何值时,A属于B
集合A={x|x²-[2a+(a²+1)]x+2a(a²+1)≤0},B={x|(x-2)[x-(3a+1)]≤0}当实数a为何值时,A属于B
集合A={x|x²-[2a+(a²+1)]x+2a(a²+1)≤0},B={x|(x-2)[x-(3a+1)]≤0}当实数a为何值时,A属于B
①
(x-2a)[x-(a²+1)]≤0;
∵a²+1≥2a;
∴ 2a≤x≤a²+1;
②当a>1/3;
(x-2)[x-(3a+1)]≤0;
2≤x≤3a+1;
∴2a≥2;
3a+1≥a²+1
∴1≤a≤3
③ 当a≤1/3;
(x-2)[x-(3a+1)]≤0;
3a+1≤x≤2;
∴2a≥3a+1;
2≥a²+1;
∴a=-1;
∴综上得:
a=-1或1≤a≤3