设函数f(X)=sin(πx/4-π/6)-2cos^2 π/8x+1若函数y=g(x)与y=f(x)的图像关于直线x=1对称求当x∈[0,4/3]时y=g(x)的最大值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 00:41:02
x͒N@_ĴRZ&4iB$v
h
0å#M^qa99%WC:YZʈG2OGӋ1MB>f
TojF ,Lx-yiL,m4PgeaYO._RK lv<kdw=HZʶI^P[!QZS1{ 9R>FV1:m"mzl'
t~ :tX[6.g5ՔQ0Pe+hߔ{qWףm&Iqqd;$Ȇpe9O|$`6=k|.M+
设函数f(X)=sin(πx/4-π/6)-2cos^2 π/8x+1若函数y=g(x)与y=f(x)的图像关于直线x=1对称求当x∈[0,4/3]时y=g(x)的最大值
设函数f(X)=sin(πx/4-π/6)-2cos^2 π/8x+1
若函数y=g(x)与y=f(x)的图像关于直线x=1对称求当x∈[0,4/3]时y=g(x)的最大值
设函数f(X)=sin(πx/4-π/6)-2cos^2 π/8x+1若函数y=g(x)与y=f(x)的图像关于直线x=1对称求当x∈[0,4/3]时y=g(x)的最大值
f(x)=sin(πx/4-π/6)-2cos²(πx/8)+1
=sin(π/4)xcos(π/6)-cos(π/4)xsin(π/6)-cos(π/4)x
=√3/2sin(π/4)x-3/2cos(π/4)x
=√3sin[(π/4)x-(π/3)]
在g(x)的图像上任取一点(x,g(x) ),它关于x=1的对称点(2-x,g(x) )
∴点(2-x,g(x) )在y=f(x)的图像上
从而g(x)=f(2-x)=√3sin[(π/4)(2-x)-(π/3)]=√3sin[(π/2)-(π/4)x-(π/3)]=√3cos[(π/4)x+(π/3)]
当0≤x≤4/3时,π/3≤(π/4)x+(π/3)≤2π/3时
∴y=g(x)在区间[0,4/3]上的最大值是:gmax=√3cos(π/3)=√3/2
设函数 f(x)=sin(2x+y),(-π
设函数f(x)=sin(2x+φ)(-π
设函数f(x)=sin(2x+φ)(-π
设函数f x=SIN(2X+φ)(-π
设函数f(x)=sin(2x+φ)(-π
设函数f(x)=sin(2x+φ)(-π
设函数f(x)=sin(2x+φ)(-π
设函数f(x)=sin(2x+φ)(-π
设函数f(x)=sin(2x+ φ)(-π
设函数f(x)=sin(2x+φ)(-π
设函数f(x)=sin(2x+ φ)(-π
设函数f(x)=sin(2x+φ)(-π
设函数f(x)=sin(πx/2+π/4)x
设函数f(x)=sin(wx+t)(-π/2
设函数f(x)=sin(wx+t)(-π/2
设函数f(x)=sinπ/6(x),则f(1)+f(2)+f(3)+…f(2008)=?
设函数f(x)=sinπ/6(x),则f(1)+f(2)+f(3)+…f(2008)=?
设函数f(x)=sin(πx/4-π/6)-2cos²πx/8+1