f(x)是定义在(0,+∞)上的增函数,且满足f(xy)=f(x)+f(y),f(2)=1.(1)求证f(3)=8;(2)解不等式f(x)-f(x-2)>3
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 09:27:43
xQN@Lq.5>ImL 5UU76MR3ffU;Ckɜ31w\xjxѴ[wX6|n
;
u^gft 0.*ٙN#EAnJDexpbhb((1W%H(i)e U()H1;N@v$#Qk2R_^M8w \
f(x)是定义在(0,+∞)上的增函数,且满足f(xy)=f(x)+f(y),f(2)=1.(1)求证f(3)=8;(2)解不等式f(x)-f(x-2)>3
f(x)是定义在(0,+∞)上的增函数,且满足f(xy)=f(x)+f(y),f(2)=1.(1)求证f(3)=8;(2)解不等式f(x)-f(x-2)>3
f(x)是定义在(0,+∞)上的增函数,且满足f(xy)=f(x)+f(y),f(2)=1.(1)求证f(3)=8;(2)解不等式f(x)-f(x-2)>3
首先,我认为你的题目错了,以应证f(8)=3.
(1)证明:f(1)=f(1)+f(1) => f(1)=0
f(4)=f(2)+f(2)=2 f(8)=f(2)+f(4)=3
由(1)知:f(8)=3.即解f(x)-f(x-2)>f(8).
=> f(x)>f(x-2)+(8)
=> f(x)>f[8(x-2)]
又:f(x)是增函数.
=> x>8(x-2)
=> 0
f(x)是定义在(0,+∞)上的递减函数f(x)是定义在(0,+∞)上的递减函数,且f(x)
f(x)是定义在(0,+∞)上的增函数 (x/y)=f(x)-f(y),证明f(xy)=f(x)+f(y)
函数f(x)是定义在(0,+∞)上的函数,f(2)=0;x>1时,f(x)
f(x)是定义在(0,+∞)上的减函数,且f(x)
定义在R上的偶函数f(x)在区间[0,+∞)上是单调增函数,若f(1)
若定义在R上的函数f(x)在区间(-∞,0]上是单调增函数,在区间(0,+∞)上是单调增函数,那f(x)是不是单调增函数若定义在R上的函数f(x)在区间(-∞,0]上是单调增函数,在区间(0,+∞)上是单调增函数,那
定义在R上的函数f(x)在区间(-∞,0]上是单调增函数,在区间[0,+∞)上也是单调增函数,则函数f(x)在R上是单调增函数;为什么如果是定义在R上的函数f(x)在区间(-∞,0]上是单调增函数,
定义在R上的函数f(x)是增函数,则满足f(x)
若函数f(x)的定义是在(0,+∞)上的增函数,则不等式f(x)>f(8x-16)的解集为
已知f(x)是定义在(0,+∞)上的增函数,集合A={x|(x-2)/(x-1)
已知函数f(x)是定义在(0,+∞)上的增函数,则函数f(-x²+5x+6)的单调区间为____
已知函数f(x)是定义在(0,+∞)上的增函数,则函数f(-x^2+5x+6)的单调区间为
已知函数f(x)是定义在(0,+∞)上的增函数 则函数f(-x^2+5x+6)的单调区间为?
设f(x)是定义在R上的增函数,试利用定义证明函数F(x)=f(x)-f(a-x)在R上是增函数
设函数f(x)是定义在(-∞,+∞)上的增函数,若不等式f(1-ax-x^2)
定义在(0,正无穷大)上的函数f(x)是增函数,若f(x)
已知函数y=f(x)是定义在R上增函数,则f(x)=0的根
f(x)是定义在R上的偶函数,f(x)在[0,+∞)上为增函数,那么f(pai)