不等式基本性质?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 01:48:35
不等式基本性质?
xUrH="d0 3\sa0[c k 5='MVeo{BL~MfG&kgP&m_Sd7 mșJ> RqgS8:'8zJ5ZB PL]ǿPk ~4}ul0?r:=bVn߫٨mLY;JN?OFt=؇C{YC>`Lb?Ͽ\_ab>?xiڣYT9+.TWl$ '\Q1 B`jl !8+' E2^iReE+UWsuWE[䋢P}=[_-zNVsx>*(ޡ1*@}݀9NᘶQi0{y[TJBڊ $nER4 WI+ .}X?~V"q>?i!Տk w1m]ӯc64 1qYN5fetaXcUS7,jUE⊤Ъ}ؿMwGBQ@{9Ԛ7 PGmӽ/jh6Cr.6͌v'hȜԏ矋9?O1EşVwvXUF:#M_|ۄQEܻS&(ĺ)f{lOlY]ЋέS7^hqbq.H2

不等式基本性质?
不等式基本性质?

不等式基本性质?
基本性质1:不等式两边同时加或减去同一个整式,不等号方向不变,
基本性质:不等式两边同时乘以(或除以)同一个大于0的整式,不等号方向不变
基本性质:不等式两边同时乘以(或除以)同一个小于0的整式,不等号方向改变

不等式两边同时加上或减去同一个数,不等式的性质不变
不等式两边同时乘以或除以一个不为0的正数,不等式的性质不变
不等式两边同时乘以或除以一个不为0的负数,不等式的符号方向改变

1.不等式的基本性质:
性质1:如果a>b,b>c,那么a>c(不等式的传递性).
性质2:如果a>b,那么a+c>b+c(不等式的可加性).
性质3:如果a>b,c>0,那么ac>bc;如果a>b,c<0,那么acb,c>d,那么a+c>b+d.
性质5:如果a>b>0,c>d>0,那么ac>bd.
性质6:如果a>b>0,n∈N,n>1,那么a...

全部展开

1.不等式的基本性质:
性质1:如果a>b,b>c,那么a>c(不等式的传递性).
性质2:如果a>b,那么a+c>b+c(不等式的可加性).
性质3:如果a>b,c>0,那么ac>bc;如果a>b,c<0,那么acb,c>d,那么a+c>b+d.
性质5:如果a>b>0,c>d>0,那么ac>bd.
性质6:如果a>b>0,n∈N,n>1,那么an>bn,且.
例1:判断下列命题的真假,并说明理由.
若a>b,c=d,则ac2>bd2;(假)
若,则a>b;(真)
若a>b且ab<0,则;(假)
若a若,则a>b;(真)
若|a|b2;(充要条件)
命题A:a命题A:,命题B:0说明:本题要求学生完成一种规范的证明或解题过程,在完善解题规范的过程中完善自身逻辑思维的严密性.
a,b∈R且a>b,比较a3-b3与ab2-a2b的大小.(≥)
说明:强调在最后一步中,说明等号取到的情况,为今后基本不等式求最值作思维准备.
例4:设a>b,n是偶数且n∈N*,试比较an+bn与an-1b+abn-1的大小.
说明:本例条件是a>b,与正值不等式乘方性质相比在于缺少了a,b为正值这一条件,为此我们必须对a,b的取值情况加以分类讨论.因为a>b,可由三种情况(1)a>b≥0;(2)a≥0>b;(3)0>a>b.由此得到总有an+bn>an-1b+abn-1.通过本例可以开始渗透分类讨论的数学思想.
练习:
1.若a≠0,比较(a2+1)2与a4+a2+1的大小.(>)
2.若a>0,b>0且a≠b,比较a3+b3与a2b+ab2的大小.(>)
3.判断下列命题的真假,并说明理由.
(1)若a>b,则a2>b2;(假) (2)若a>b,则a3>b3;(真)
(3)若a>b,则ac2>bc2;(假) (4)若,则a>b;(真)
若a>b,c>d,则a-d>b-c.(真).

收起