在Rt△ABC中,∠C=90°,c=10,直角边a,b(a<b)的长为方程x²-mx+3m+6=0的方程的两个根1.求m值2.求SinA+SinB+SinA·SinB

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 22:30:53
在Rt△ABC中,∠C=90°,c=10,直角边a,b(a<b)的长为方程x²-mx+3m+6=0的方程的两个根1.求m值2.求SinA+SinB+SinA·SinB
xRn@~HHu7R7{$;'"ʡLj**Q%~u>Q/k;q"B8jffgQw\uO+5]kxUձ,qѫ/x4481&޾FvQv6- -c w}$<B8xhMO!{W\3b}/5CvDeR|" dbkp^K&&i@k 2&َuFMAfMu82; Tj(@YEbeY:]BI%`Y y C@NDހ9bCs`TՔ,ѓl("Y,!;V}TrsVUq)5QYō^NWP\bK0h|EO'^ǕRh eX03U9lNh20zk/- GϏ$n]Nw [Rd A(B?nn5 e

在Rt△ABC中,∠C=90°,c=10,直角边a,b(a<b)的长为方程x²-mx+3m+6=0的方程的两个根1.求m值2.求SinA+SinB+SinA·SinB
在Rt△ABC中,∠C=90°,c=10,直角边a,b(a<b)的长为方程x²-mx+3m+6=0的方程的两个根
1.求m值
2.求SinA+SinB+SinA·SinB

在Rt△ABC中,∠C=90°,c=10,直角边a,b(a<b)的长为方程x²-mx+3m+6=0的方程的两个根1.求m值2.求SinA+SinB+SinA·SinB
解直角边a,b(a<b)的长为方程x²-mx+3m+6=0的方程的两个根
则a+b=m(m>0),ab=3m+6且Δ=(-m)^2-4(3m+6)>0
又由a^2+b^2=c^2=100
即(a+b)^2-2ab=100
即m^2-2(3m+6)=100
即m^2-6m-112=0
即(m-14)(m+8)=0
即m=14或m=-8(舍去)
即m=14
2sinA=a/c,sinB=b/c,sinAsinB=ab/c^2
即SinA+SinB+SinA·SinB
=a/c+b/c+ab/c^2
=(a+b)/c+ab/c^2
=m/10+(3m+6)/100
=14/10+48/100
=188/100
=94/50
=47/25

1 ) 由韦达定理:a+b=m, ab=3m+6
由题意:a^2+b^2=c^2=100
即(a+b)^2-2ab=100
m^2-2(3m+6)=100
m^2-6m-112=0
(m-14)(m+8)=0
得m=14或-8
但m=a+b>0,
所以只能取m=14
2) sinA=a/c, sinB=b/c
sinA...

全部展开

1 ) 由韦达定理:a+b=m, ab=3m+6
由题意:a^2+b^2=c^2=100
即(a+b)^2-2ab=100
m^2-2(3m+6)=100
m^2-6m-112=0
(m-14)(m+8)=0
得m=14或-8
但m=a+b>0,
所以只能取m=14
2) sinA=a/c, sinB=b/c
sinA+sinB+sinAsinB
=a/c+b/c+(ab)/c^2
=(a+b)/c+ab/c^2
=m/c+(3m+6)/c^2
=14/10+48/100
=1.88

收起

可考虑考虑