15道数学题,因式分解1.3(x-3)的三次方y-(1-x)的三次方Z2.2ab三次方-2ab3.(3m+2n)的平方-(m-n)的平方4.-x的平方-4y的平方+4xy5.3ax平方+6axy+3ay6.16a四次方+24a平方b平方+9b四次方7.25m平方-80m+648.4分之 x的平方

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 15:12:44
15道数学题,因式分解1.3(x-3)的三次方y-(1-x)的三次方Z2.2ab三次方-2ab3.(3m+2n)的平方-(m-n)的平方4.-x的平方-4y的平方+4xy5.3ax平方+6axy+3ay6.16a四次方+24a平方b平方+9b四次方7.25m平方-80m+648.4分之 x的平方
xXKs+*`Px2SMANBYT(ےI[2Z%J+C'Y H= %?CVIĠ\R҆}=qY GuR<},ewGOP~ wJBJ1l/J&yyHxU37⩥x̫^I(Wg$"l ^V-&`r9;fY+blFnE? % *AHYP9`aR\F$9 4$b&\Ylrat IJfcd9#KLJ>IJ pCW' #K v9G q 9\Z~)^qx9[qw A泚hS̟flQ5Elm2 f5UɊe)neقi i9,cV0$;d]p=˒)۶$Ǖ$Cڪg];J-8"+~fe3K#)RV+u IXF^>-sb&vA͉ Q3DK5d]BFS[Pr;_0t1WP5Kڎ\p]p\.g`Q[&0Y"Knedu;oTY4Y5>-Եk0]/7~2\;sG g(B7؟V 2FosG&? 'M@>ր4_ /1{@A!YP}HnYfŹ{HZAujO h? `F5AbMټNق*<9* "Ce%8AzD9NI].;&`wr1HcewGHwiz9r\w)جbr~B7ER-j ˷oAF+ #4%RwFlj"L.0L&sdngxc,znsCo v:eNzW)TSЏqt (ֈTz)%X7B#Xz536Pzw}O֐%-Kg Up}۷$dkmAAnm1X~ B?5k@  U'/0+@lAmq?({d߾1#%h) sh=pzà MosHl3|x1dpL{2:UnuO@-5??)T$Gmjur l'X)Gx{&C;rc)A=2Eghg#wE`'P5,W;?ŐA2&^S)jKy}ETYѓ`y?h,0@D٘@+NG'jfPN#x J@*:~od> qJP#BIпS2PK$UR%^N}πaTۘbاAfd(=K7z1jp ޜBK9A _mzxFl6[=EvT)u( {GQnaPoAA0+p @IQ]=7ŽWGF&G `3bĕ0g[9cVOJ2.#BK_uȝw!X\sXh Β!b^ŠdMNdab$"~L3A"!{kam-膺L,iSԪaL%>)+,%&KԞ07jC]U;=Q-^o1+.\ 邕9y,EtIV}zD XNwFA$dAL3; D;xnV0C?ܨ+l޵Zp{2 U-'. ^l Y|hY8f4WtwȄ/i L1WuJӯ4"K] d*oۦÝfSBDBiWziwA46G,F*1A㷚#Bvv(ÈU(y~chwދN ~qL Ñ$.& `.7uv08&^{H'opk \a;@&43p(GW ԟV9L^wkdl :U-?O?'[CkfaTFqI3ceX6wq>@a

15道数学题,因式分解1.3(x-3)的三次方y-(1-x)的三次方Z2.2ab三次方-2ab3.(3m+2n)的平方-(m-n)的平方4.-x的平方-4y的平方+4xy5.3ax平方+6axy+3ay6.16a四次方+24a平方b平方+9b四次方7.25m平方-80m+648.4分之 x的平方
15道数学题,因式分解
1.3(x-3)的三次方y-(1-x)的三次方Z
2.2ab三次方-2ab
3.(3m+2n)的平方-(m-n)的平方
4.-x的平方-4y的平方+4xy
5.3ax平方+6axy+3ay
6.16a四次方+24a平方b平方+9b四次方
7.25m平方-80m+64
8.4分之 x的平方+xy+y平方
9.4-12(x-y)+9(x-y)平方
10.a平方-ab+ac-bc
11.2ax-10ay+5by-bx
12.x平方-y平方+ax+ay
13.a平方-2ab+b平方-c平方
14.x四次方-3x三次方-28x平方
15.6x平方-7x-5
题没错 、

15道数学题,因式分解1.3(x-3)的三次方y-(1-x)的三次方Z2.2ab三次方-2ab3.(3m+2n)的平方-(m-n)的平方4.-x的平方-4y的平方+4xy5.3ax平方+6axy+3ay6.16a四次方+24a平方b平方+9b四次方7.25m平方-80m+648.4分之 x的平方
第一题和第五题打错了吧


这么难的题 没个100分的 谁给你做啊 光算就得算一会 时间就是金钱啊 没分谁做这个免费劳动啊

第五题绝对有误

第一个不会
第二个2ab(b+1)(b-1)
第三个 拆开得8m方+3n方+14mn
第四个 -(x-2y)方
第五个 题是否错了?应该是3ax平方+6axy+3ay平方 答案为3a(x+y)方
第六个 (4a方+3b方)方
第七个 (5m-8)方
第八个 (1/2x+y)方
第九个 (2-3x+3y)方
第十个 ...

全部展开

第一个不会
第二个2ab(b+1)(b-1)
第三个 拆开得8m方+3n方+14mn
第四个 -(x-2y)方
第五个 题是否错了?应该是3ax平方+6axy+3ay平方 答案为3a(x+y)方
第六个 (4a方+3b方)方
第七个 (5m-8)方
第八个 (1/2x+y)方
第九个 (2-3x+3y)方
第十个 (a-b)(a+c)
第十一个 (2a-b)(x-5y)
第十二个 (x-y+a)(x+y)
第十三个 (a-b+c)(a-b-c)
第十四个 不会
第十五个 (2x+1)(3x-5)

收起

分解因式:x^3-4x^2+6x-4

因式分解的十二种方法 :
把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。因式分解的方法多种多样,现总结如下:
1、 提公因法
如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。
例1、 分解因式x -2x -x(2003淮安市中...

全部展开

分解因式:x^3-4x^2+6x-4

因式分解的十二种方法 :
把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。因式分解的方法多种多样,现总结如下:
1、 提公因法
如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。
例1、 分解因式x -2x -x(2003淮安市中考题)
x -2x -x=x(x -2x-1)
2、 应用公式法
由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。
例2、分解因式a +4ab+4b (2003南通市中考题)
a +4ab+4b =(a+2b)
3、 分组分解法
要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)
例3、分解因式m +5n-mn-5m
m +5n-mn-5m= m -5m -mn+5n
= (m -5m )+(-mn+5n)
=m(m-5)-n(m-5)
=(m-5)(m-n)
4、 十字相乘法
对于mx +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)
例4、分解因式7x -19x-6
分析: 1 -3
7 2
2-21=-19
7x -19x-6=(7x+2)(x-3)
5、配方法
对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。
例5、分解因式x +3x-40
解x +3x-40=x +3x+( ) -( ) -40
=(x+ ) -( )
=(x+ + )(x+ - )
=(x+8)(x-5)
6、拆、添项法
可以把多项式拆成若干部分,再用进行因式分解。
例6、分解因式bc(b+c)+ca(c-a)-ab(a+b)
bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b)
=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b) =c(c-a)(b+a)+b(a+b)(c-a) =(c+b)(c-a)(a+b)
7、 换元法
有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。
例7、分解因式2x -x -6x -x+2
2x -x -6x -x+2=2(x +1)-x(x +1)-6x
=x [2(x + )-(x+ )-6
令y=x+ , x [2(x + )-(x+ )-6
= x [2(y -2)-y-6]
= x (2y -y-10)
=x (y+2)(2y-5)
=x (x+ +2)(2x+ -5)
= (x +2x+1) (2x -5x+2)
=(x+1) (2x-1)(x-2)
8、 求根法
令多项式f(x)=0,求出其根为x ,x ,x ,……x ,则多项式可因式分解为f(x)=(x-x )(x-x )(x-x )……(x-x )
例8、分解因式2x +7x -2x -13x+6
令f(x)=2x +7x -2x -13x+6=0
通过综合除法可知,f(x)=0根为 ,-3,-2,1
则2x +7x -2x -13x+6=(2x-1)(x+3)(x+2)(x-1)
9、 图象法
令y=f(x),做出函数y=f(x)的图象,找到函数图象与X轴的交点x ,x ,x ,……x ,则多项式可因式分解为f(x)= f(x)=(x-x )(x-x )(x-x )……(x-x )
例9、因式分解x +2x -5x-6
令y= x +2x -5x-6
作出其图象,见右图,与x轴交点为-3,-1,2
则x +2x -5x-6=(x+1)(x+3)(x-2)
10、 主元法
先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解。
例10、分解因式a (b-c)+b (c-a)+c (a-b)
分析:此题可选定a为主元,将其按次数从高到低排列
a (b-c)+b (c-a)+c (a-b)=a (b-c)-a(b -c )+(b c-c b)
=(b-c) [a -a(b+c)+bc]
=(b-c)(a-b)(a-c)
11、 利用特殊值法
将2或10代入x,求出数P,将数P分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式。
例11、分解因式x +9x +23x+15
令x=2,则x +9x +23x+15=8+36+46+15=105
将105分解成3个质因数的积,即105=3×5×7
注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值
则x +9x +23x+15=(x+1)(x+3)(x+5)
12、待定系数法
首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。
例12、分解因式x -x -5x -6x-4
分析:易知这个多项式没有一次因式,因而只能分解为两个二次因式。
设x -x -5x -6x-4=(x +ax+b)(x +cx+d)
= x +(a+c)x +(ac+b+d)x +(ad+bc)x+bd
所以 解得
则x -x -5x -6x-4 =(x +x+1)(x -2x-4)

收起