1/(x^3+8)的不定积分的求法

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 10:45:25
1/(x^3+8)的不定积分的求法
xj@_ePvYuׂ:D2z #[_ Ř$rJ ?$IJhn1ͻKJOy~;-+Ġ7ݝoh횬lr:OFd 3=Il8+~[v5xmj֍)3mtc(LN+WuebޝKUA=m3 v0.1T&-_ۭfޠJoZYgd[@R j0Eaܵ+[Ht{}5=d4u>Z٢JW!-ٛ o)Y]IO٥j. de&K9[R \x >~gGdvvKzk* c -> c(g''?{qNf@ș|OZwJ秢z|&g=G Du+-ԆQhUil;F=2/?xQ%yf3y.{;guܮ < x.1zB  $

1/(x^3+8)的不定积分的求法
1/(x^3+8)的不定积分的求法

1/(x^3+8)的不定积分的求法
∫ 1/(x³+8) dx
= (1/12)∫ dx/(x+2) - (1/12)∫(x-4)/(x²-2x+4) dx
= (1/12)∫ d(x+2)/(x+2) - (1/12)∫ [(1/2)(2x-2)-3]/(x²-2x+4) dx
= (1/12)ln| x+2 | - (1/24)∫ (2x-2)/(x²-2x+4) dx + (1/4)∫ dx/(x²-2x+4)
= (1/12)ln| x+2 | - (1/24)∫ d(x²-2x+4)/(x²-2x+4) + (1/4)∫ dx/[(x-1)²+3]
= (1/12)ln| x+2 | - (1/24)ln| x²-2x+4 | + arctan[(x+1)/√3] / (4√3) + C
拆解步骤:
1/(x³+8) = 1/[(x+2)(x²-2x+4)] = A/(x+2) + (Bx+C)/(x²-2x+4)
1 = A(x²-2x+4) + (Bx+C)(x+2)
1 = Ax²-2Ax+4A+Bx²+Cx+2Bx+2C
1 = (A+B)x² + (-2A+2B+C)x + (4A+2C)
有下列方程式:
A+B = 0 => B=-A
-2A+2B+C = 0
4A+2C = 1 => C=(1-4A)/2
由第二个方程有:-2A+2(-A)+(1-4A)/2 = 0
-4A-4A+1-4A = 0
-12A = -1
A = 1/12
B = -1/12
C = [1-4(1/12)]/2 = (8/12)/2 = 4/12
∴1/(x³+8) = 1/[12(x+2)] + (-x+4)/[12(x²-2x+4)]

这个不用换元法,用凑微分法∫x^3/√(1-x^8)dx =1/4∫1/√(1-x^8)dx^4 =1/4arcsin(x^4)+C