设函数f(x)=x^4+ax^3+2x^2+b(x∈R),a,b∈R.(1)若对任意的a∈[-2,2]不等式f(x)≤1在[-1,0]上恒成立,求b的取值范围.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 18:27:09
设函数f(x)=x^4+ax^3+2x^2+b(x∈R),a,b∈R.(1)若对任意的a∈[-2,2]不等式f(x)≤1在[-1,0]上恒成立,求b的取值范围.
xQMO@9n-@8=H!!/m5\<O;f7}2"RL&l!;Z ARܞ%]yÏ6Fh汍/vXgc *z[Wký92wwl3ύ$Q+V|$ Bhp(-I^4?E3?l{C |`/Κ~5j?X|3p_)26I|t&}j?gSs

设函数f(x)=x^4+ax^3+2x^2+b(x∈R),a,b∈R.(1)若对任意的a∈[-2,2]不等式f(x)≤1在[-1,0]上恒成立,求b的取值范围.
设函数f(x)=x^4+ax^3+2x^2+b(x∈R),a,b∈R.(1)若对任意的a∈[-2,2]不等式f(x)≤1在[-1,0]上恒成立,
求b的取值范围.

设函数f(x)=x^4+ax^3+2x^2+b(x∈R),a,b∈R.(1)若对任意的a∈[-2,2]不等式f(x)≤1在[-1,0]上恒成立,求b的取值范围.
f'(x)=4x^3+3ax^2+4x=4x(x^2+3ax/4+1)=4x[(x+3a/8)^2+1-(3a/8)^2]
因为a∈[-2,2],所以1-(3a/8)^2>0
故f'(x)=0只有一个极值点x=0,且为极小值点.
故当x∈[-1,0]时,f(x)单调减
此区间的最大值为f(-1)=1-a+2+b=3-a+b
由题意,有3-a+b