函数y=cos²x-3cosx+2的最小值是多少

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 12:21:24
函数y=cos²x-3cosx+2的最小值是多少
x){ھ M/VS64xFgMi4 m l ns*!&ꢚ~OXף 6 56 P-@ )md}cv;~|f=?^d9CܳΆ'>ٽiҧLA6C

函数y=cos²x-3cosx+2的最小值是多少
函数y=cos²x-3cosx+2的最小值是多少

函数y=cos²x-3cosx+2的最小值是多少
y=cos²x-3cosx+2
=(cosx-3/2)²-1/4
当cosx=1时,取最小值
y=0

y=(cosx-3/2)²-1/4 ,
∵ -1<=cosx<=1
∴当 cosx=1 时,y最小,最小值为 0

y=(cosx-3/2)-1/4
因为cosx最大值为1
所以代入得y=0