设x+y+z=11求函数u=2x*x+3y*y+z*z的最小值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 23:45:32
设x+y+z=11求函数u=2x*x+3y*y+z*z的最小值
xAK0ǿN ݥ(BS+CvzmxQk󠇐{

设x+y+z=11求函数u=2x*x+3y*y+z*z的最小值
设x+y+z=11求函数u=2x*x+3y*y+z*z的最小值

设x+y+z=11求函数u=2x*x+3y*y+z*z的最小值
由柯西不等式(a^2+b^2+c^2)(x^2+y^2+z^2)>=(ax+by+cz)^2,得
((1/√2)^2+(1/√3)^2+1)(2x^2+3y^2+z^2)>=(x+y+z)^2
2x^2+3y^2+z^2>=11^2/(1/2+1/3+1)=66

用拉格朗日乘数法
x=3
y=2
z=6

用柯西不等式解。
(2x2+3y2+z2)(1/2+1/3+1)>=(x+y+z)2

最小值是66

柯西不等式