求于圆x2+y2-2x+4y+1=0同心,且与直线2x-y+1=0相切的圆的方程

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 14:57:49
求于圆x2+y2-2x+4y+1=0同心,且与直线2x-y+1=0相切的圆的方程
xN@ g"BEӵ!mL Vbm c ƍQ#I}0 ^"U7̹~z3}'. M*Qhl:fs1 3G+jHpׂ)8ӛߏ㶼;3Yo;ff.2$"uNuiqb(KQ[]k|]O$t>lͫy[M.ٛE@P]w[~=9QQ~t,VG:AUfoyY< 4_Z:Ry +Y

求于圆x2+y2-2x+4y+1=0同心,且与直线2x-y+1=0相切的圆的方程
求于圆x2+y2-2x+4y+1=0同心,且与直线2x-y+1=0相切的圆的方程

求于圆x2+y2-2x+4y+1=0同心,且与直线2x-y+1=0相切的圆的方程
圆x2+y2-2x+4y+1=0即:(x-1)²+(y+2)²=2²
圆心为(1,-2),到直线2x-y+1=0的距离d为
d=|2*1-(-2)+1|/√(2²+1)=√5
圆与直线相切,说明半径等于圆心到直线的距离,即r=√5
∴圆的方程为:(x-1)²+(y+2)²=5

所求的圆的圆心坐标为(1,-2),要求的圆的半径为点(1,-2)到直线的距离=根号5。即(x-1)²+(y+2)²=5。