已知函数f(x)=(2^x-1)/(2^x+1),(1)证明函数f(x)是R上的减函数(2)求函数f(x)的值域(3)令g(x)=x^2/f(x),判定函数g(x)的奇偶性,并证明

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 21:44:30
已知函数f(x)=(2^x-1)/(2^x+1),(1)证明函数f(x)是R上的减函数(2)求函数f(x)的值域(3)令g(x)=x^2/f(x),判定函数g(x)的奇偶性,并证明
xSN@WM;3n MtAwjD 7 " l:q=g xך%n_r":AtS#]u~{/_gtӑG zd04 T`6Ųor /DeAOZxlb7cyF hd. I`;d {5TN2T*wg@ SXP,uc5:fP;g%0?uSQz2A$ASC[ýsThyJ P,$Ʈa`wbmmO\jQItLga&aNy(#_H(x

已知函数f(x)=(2^x-1)/(2^x+1),(1)证明函数f(x)是R上的减函数(2)求函数f(x)的值域(3)令g(x)=x^2/f(x),判定函数g(x)的奇偶性,并证明
已知函数f(x)=(2^x-1)/(2^x+1),(1)证明函数f(x)是R上的减函数(2)求函数f(x)的值域(3)令g(x)=x^2/f(x),判定函数g(x)的奇偶性,并证明

已知函数f(x)=(2^x-1)/(2^x+1),(1)证明函数f(x)是R上的减函数(2)求函数f(x)的值域(3)令g(x)=x^2/f(x),判定函数g(x)的奇偶性,并证明
f(x)=(2^x+1-2)/(2^x+1)=1-2/(2^x+1)
∵2^x是R上的增函数,值域为(0,+00)
∴2^x+1是R上的增函数,值域为(1,+00)
∴1/(2^x+1)是R上的减函数,值域为(0,1)
∴-2/(2^x+1)是R上的增函数,值域为(-2,0)
∴1-2/(2^x+1)是R上的增函数,值域为(-1,1)
即f(x)是R上的增函数,值域为(-1,1)
上题已解,值域为(-1,1)
f(-x)
=[2^(-x)-1]/[2^(-x)+1]
=(1-2^x)/(1+2^x) .注:分子分母同时乘以2^x
=-f(x)
即f(-x)=-f(x)
∴g(-x)
=(-x)²/f(-x)
=-x²/f(x)
=-g(x)
即g(-x)=-g(x)
∴g(x)为奇函数