求函数y=2(log1/4底4x)^2+7log1/4底x+1,x∈【2,4】的最大值与最小值.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 00:42:04
求函数y=2(log1/4底4x)^2+7log1/4底x+1,x∈【2,4】的最大值与最小值.
xRn@(RQcܙqlS7UA3c'64"D-bYl:e_&vtQ 68sGMŗÓgtv! ?d}Yu>Ѡ7=NHNߜ\|2>/bÕߓsOo/GUX޺ mgՠ¬CZݽ֟ϿF.DUxk3~7lYgK2*2 8Ɋf]BFέLUںUB=Yh4l=z,y*,P`QYRDC#<|xܵ1Fi4s,3, ɨo@)eaH(: S0!0)0|)0)7RK/RPTaIվxbW*'M"t`"47s k

求函数y=2(log1/4底4x)^2+7log1/4底x+1,x∈【2,4】的最大值与最小值.
求函数y=2(log1/4底4x)^2+7log1/4底x+1,x∈【2,4】的最大值与最小值.

求函数y=2(log1/4底4x)^2+7log1/4底x+1,x∈【2,4】的最大值与最小值.
答:
y=2*[log1/4(4x)]^2+7log1/4(x)+1
=2*[log1/4(4)+log1/4(x)]^2+7log1/4(x)+1
=2*[-1+log1/4(x)]^2+7log1/4(x)+1 设m=log1/4(x),2

log1/4底4x=log1/4(4)+log1/4(x)=-1+log1/4(x)

令log1/4(x)=t

则y=2(t-1)^2+7t+1=2t^2+3t+3

t=log1/4(x)    x∈[2,4]

t∈[-1,-1/2]

t=-1时,最大值=2

t=-3/4时,最小值=15/8