已知:如图所示,E,F分别是正方形的边BC,DC上的一点,且∠EAF=45°求证BE+DF=EF

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 11:40:22
已知:如图所示,E,F分别是正方形的边BC,DC上的一点,且∠EAF=45°求证BE+DF=EF
xJ0hqB/v4 d ydx!*DMkzWk(nא|kG([Pgψ!.5\{iې'A,D--n ׷=anNLz &B=r1@;ی=^?v _TEn%lXxNMV*`nXsS˜bbbOT{L*~JHa&LJZ R(,@@Ԓ 8qL[U`fGF 9  VSs1ש2S;UMఫ PPx&*4rmƷ@"!

已知:如图所示,E,F分别是正方形的边BC,DC上的一点,且∠EAF=45°求证BE+DF=EF
已知:如图所示,E,F分别是正方形的边BC,DC上的一点,且∠EAF=45°求证BE+DF=EF

已知:如图所示,E,F分别是正方形的边BC,DC上的一点,且∠EAF=45°求证BE+DF=EF
证明:延长CD至G,使DG=BE;连接AG∵四边形ABCD是正方形∴∠ADC=90°.AB=AD∴∠ADG=90°在△ABE和△ADG中AB=AD,∠B=∠ADG,BE=DG∴△ABE≌△ADG(SAS)∴∠BAE=∠DAG,AE=AG∵∠BAE+∠FAD=90°-∠EAF=90°-45°=45°∴∠DAG+∠FAD=45°=∠GAF在△AEF和△AGF中AE=AG,∠EAF=∠GAF=45°,AF=AF∴△AEF≌△AGF(SAS)∴EF=GF∵GF=DG+FD=BE+FD∴EF=BE+FD

证明:延长CD至G,使DG=BE;连接AG∵四边形ABCD是正方形∴∠ADC=90°.AB=AD∴∠ADG=90°在△ABE和△ADG中AB=AD,∠B=∠ADG,BE=DG∴△ABE≌△ADG∴∠BAE=∠DAG,AE=AG∵∠BAE+∠FAD=90°-∠EAF=90°-45°=45°∴∠DAG+∠FAD=45°=∠GAF在△AEF和△AGF中AE=AG,∠EAF=∠GAF=45°,AF=AF∴...

全部展开

证明:延长CD至G,使DG=BE;连接AG∵四边形ABCD是正方形∴∠ADC=90°.AB=AD∴∠ADG=90°在△ABE和△ADG中AB=AD,∠B=∠ADG,BE=DG∴△ABE≌△ADG∴∠BAE=∠DAG,AE=AG∵∠BAE+∠FAD=90°-∠EAF=90°-45°=45°∴∠DAG+∠FAD=45°=∠GAF在△AEF和△AGF中AE=AG,∠EAF=∠GAF=45°,AF=AF∴△AEF≌△AGF∴EF=GF∵GF=DG+FD=BE+FD∴EF=BE+FD

收起

证明:延长CD至G使DG=BE;连接AG∵四边形ABCD正方形∴∠ADC=90°.AB=AD∴∠ADG=90°△ABE和△ADGAB=AD∠B=∠ADGBE=DG∴△ABE≌△ADG∴∠BAE=∠DAGAE=AG∵∠BAE+∠FAD=90°-∠EAF=90°-45°=45°∴∠DAG+∠FAD=45°=∠GAF△AEF和△AGFAE=AG∠EAF=∠GAF=45°AF=AF∴△AEF≌△AGF∴E...

全部展开

证明:延长CD至G使DG=BE;连接AG∵四边形ABCD正方形∴∠ADC=90°.AB=AD∴∠ADG=90°△ABE和△ADGAB=AD∠B=∠ADGBE=DG∴△ABE≌△ADG∴∠BAE=∠DAGAE=AG∵∠BAE+∠FAD=90°-∠EAF=90°-45°=45°∴∠DAG+∠FAD=45°=∠GAF△AEF和△AGFAE=AG∠EAF=∠GAF=45°AF=AF∴△AEF≌△AGF∴EF=GF∵GF=DG+FD=BE+FD∴EF=BE+FD

收起

已知E、F分别是正方形的边BC、DC上的点,且∠EAF=45°求证:BE+DF=EF。