f(x)在【0,1】上二阶可导,且f(0)=0,f(1)=1,f(x)在0的导数等于1,在1的导数等于2求证f(a)的二阶导=f(a)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 02:38:55
f(x)在【0,1】上二阶可导,且f(0)=0,f(1)=1,f(x)在0的导数等于1,在1的导数等于2求证f(a)的二阶导=f(a)
xŔ]OPǿbe[ך4}tIgl4&C n "&rs06Ɩ!Ʒ9]xwըY|֎*rZ{U +Y53wO`N3R"np*,r"'՘>C`帚`P4cIK\Ӵ8' C>~#xg,d5Y)`*^81Xa Y .:7\ 5$!vbLz?!]B+l70lx]vПh9b^(m&CMqߚ;]/^~PC  =MveJMJU)+Ԉ89< C8έ$ e*r9.ֱPA"" z< #Ѡf;yHwH+W0cpoc6pDf` [6wRt7:SpA6Gikg By@_8yV/jԇL~Ih/j/^L&A@{qpx h(H(RZgNը^ 4Bz܅'fm{-[w ^ '×({ej~a9+|GSgRuE

f(x)在【0,1】上二阶可导,且f(0)=0,f(1)=1,f(x)在0的导数等于1,在1的导数等于2求证f(a)的二阶导=f(a)
f(x)在【0,1】上二阶可导,且f(0)=0,f(1)=1,f(x)在0的导数等于1,在1的导数等于2求证f(a)的二阶导=f(a)

f(x)在【0,1】上二阶可导,且f(0)=0,f(1)=1,f(x)在0的导数等于1,在1的导数等于2求证f(a)的二阶导=f(a)
(1) 由f(x)在x = 0处连续,且lim{x → 0} f(x)/x存在,
有f(0) = lim{x → 0} f(x) = lim{x → 0} f(x)/x · lim{x → 0} x = 0.
又由lim{x → 0} f(x)/x = 1 > 0,根据极限保序性,存在0 < s < 1使f(s)/s > 0,进而有f(s) > 0.
同理,由lim{x → 1} f(x)/(x-1) = 2可得f(1) = 0,且存在0 < t < 1使f(t) < 0.
而f(x)在[0,1]连续,由介值定理,存在ξ ∈ (0,1)使f(ξ) = 0.
(2) 考虑函数g(x) = f(x)e^(-x),则g(x)在[0,1]连续且可导.
并有g(0) = g(ξ) = g(1) = 0.
在区间[0,ξ]上由Rolle定理,存在α ∈ (0,ξ),使g'(α) =0,即有f'(α)-f(α) = 0.
同理,存在β ∈ (ξ,1),使g'(β) =0,即有f'(β)-f(β) = 0.
再考虑函数h(x) = (f'(x)-f(x))e^x,则h(x)同样在[0,1]连续并可导.
又h(α) = h(β) = 0,在[α,β]上由Rolle定理,存在η ∈ (α,β)使h'(η) = 0.
代回h(x)的定义式即得f"(η)-f(η) = 0,也即f"(η) = f(η).

f(x)在[0,1]上二阶可导,f(0)=0,且f''(x)/f'(x)≠2/(1-x).试证明方程:f(x)/f'(x)=1-x在(0,1)内有且只有一个根 f(x)在(-∞,+∞) 二阶可导,f(x)/x=1,且f''(x)>0,证明f(x)>=x 微积分 设f(x)在[0,1]X上二阶可导,f(1)=f(0)=0设f(x)在[0,1]X上二阶可导,f(1)=f(0)=0,且max f(x)=2 (0 定义在(-1,1)上的函数f(x)满足f(-x)+f(x)=0,且f'(x) 设f(x)在[a,b]上二阶可导,且f''(x)>0,证明:函数F(x)=(f(x)-f(a))/(x-a)在(a,b]上单调增加 设函数f(x)在闭区间[0,1]上可导,且f(0)×f(1) 设f(x)在[0,1]上有二阶连续导数,且满足f(1)=f(0)及|f''(x)| 导数:f(x+y)=f(x)f(y),且f'(o)=1,求f'(x)f(x+y)=f(x)f(y),且f'(o)=1,求f'(x)f(x+y)=f(x)+f(y)+2xy,且f'(o)存在,求f'(x) f(1+x)=af(x),且f'(0)=b,求f'(1) 设f (x)在x=0处可导,且f (0)=0,求证:lim(x→∞)f (tx)-f (x)/x=(t-1)f' (0) 证明:若函数f(x)在满足关系式f'(x)=f(x),且f(0)=1,则f(x)=e^x 证明:若函数f(x)在(-oo,+oo)内满足关系式f'(x)=f(x),且f(0)=1,则f(x)=e^x 证明:若函数f(x)在满足关系式f'(x)=f(x),且f(0)=1,则f(x)=e^x如题 证明若函数f(x)在R内可导且f'(x)=f(x),f(0)=1,则f(x)=e^x 证明:若函数f(x)在(-∞,+∞)内满足不等式f'(x)=f(x),且f(0)=1,则f(x)=e∧x 设函数f(x)在(-∞,+∞)可导,且满足f(0)=1,f'(x)=f(x),证明f(x)=e^x 高等数学f(x+y)=f(x)+f(y)/1-f(x)f(y),求f(x)f(x+y)=f(x)+f(y)/1-f(x)f(y),则f(x)=tan(ax)怎么证明?f(x)在(-∞,+∞)上有定义,且f'(x)=a(a不等于0) 函数f(x)在定义域R内可导,且f(x)满足 f(x)=f(2-x) (x-1)f'(x)>函数f(x)在定义域R内可导,且f(x)满足 ①f(x)=f(2-x) ②(x-1)f'(x)>0 ③f(3)=0 则不等式xf(x)>0的解集为 设函数f(x)在(-1,1)有定义且满足x≤f(x)≤x²+x证明f'(0)存在且f'(0)=1