在△ABC中,∠B=60°,△ABC的角平分线AD、CE相交于点O,求证:AE+CD=AC

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 22:44:02
在△ABC中,∠B=60°,△ABC的角平分线AD、CE相交于点O,求证:AE+CD=AC
xSKJA, B\mA A/AA53 VOϧ#wΦ{^~5]UBlyr{v{ }^o3}wi\Ck-*?KPxqL(iऍ!W⒣wH:50V,ËJ;DW LAE(HV@:u|Q6k8r3?Y|N#Q\sdR&DPJ2eƄHCBr%`ՠE)f7t+I1+ ϐ?(5h|>cz;^08&t--g7EU>CG\tRe.0hIK~s X(_@ulRz_?]x4{|6*__H

在△ABC中,∠B=60°,△ABC的角平分线AD、CE相交于点O,求证:AE+CD=AC
在△ABC中,∠B=60°,△ABC的角平分线AD、CE相交于点O,求证:AE+CD=AC

在△ABC中,∠B=60°,△ABC的角平分线AD、CE相交于点O,求证:AE+CD=AC
证明:在AC上截取CF=CD,△ODC≌△COF,因为∠B=60°,∠BAC+∠BCA=120°
AD、CE是角平分线,∠CAD+∠ECA=60°=∠COD=∠COF,∠AOF=60°=∠AOE,
再证△AOE≌△AOF,AF=AE,AE+CD=AC

在AC上截取AF = AE,
∵AD平分∠BAC,
∴∠EAO =∠FAO =∠BAC/2
∵AO =AO
∴△EAO≌△FAO
∴∠EOA=∠FOA
∵CE平分∠ACB
∴∠ACO = ∠BCO=∠ACB/2
∵∠BAC+∠ACB+∠B=180°
∵∠B=60°
∴∠BAC+∠ACB=120°
∴∠EOA =...

全部展开

在AC上截取AF = AE,
∵AD平分∠BAC,
∴∠EAO =∠FAO =∠BAC/2
∵AO =AO
∴△EAO≌△FAO
∴∠EOA=∠FOA
∵CE平分∠ACB
∴∠ACO = ∠BCO=∠ACB/2
∵∠BAC+∠ACB+∠B=180°
∵∠B=60°
∴∠BAC+∠ACB=120°
∴∠EOA = ∠FOA = ∠FAO + ∠ACO = 1/2(∠BAC+∠ACB) = 60°
∴∠COF = 60°= ∠EOA = ∠DOC
∵∠ACO = ∠BCO,OC=OC
∴△COF≌△COD
∴CD=CF
∴AC = AF + CF = AE+CD

收起