概率论证明题,任意条件下,证明P(AB)+P(AC)-P(BC)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 14:10:30
概率论证明题,任意条件下,证明P(AB)+P(AC)-P(BC)
xQN@~=ڪI g ޫ? u$ %( рPEpvɯб7 bL/mo\vgofJI wu8E5?i|:UWx|:恣IdC1LVzywJI$J%KoU:Xmhf,8 4L` kPL ,5h_b!z~JNZIJߪDJCl;Elv?>߳k8'Q}I0PSsրPWӒ8zS~,-~AO3~YG};r;Yy{y/<<&b

概率论证明题,任意条件下,证明P(AB)+P(AC)-P(BC)
概率论证明题,任意条件下,证明P(AB)+P(AC)-P(BC)

概率论证明题,任意条件下,证明P(AB)+P(AC)-P(BC)
证明 对于任意的事件A,B,C
因为AB ∪AC=A(B∪C)包含于A,于是
P(AB ∪AC) ≤ P(A),(1)
另一方面,又有
P(AB ∪AC)=P(AB)+P(AC)-P(AB∩AC)
=P(AB)+P(AC)-P(ABC) ≥P(AB)+P(AC)-P(BC).(2) (因为P(ABC)≤ P(BC))
由(1)式和(2)式可得
P(AB)+P(AC)-P(BC)≤ P(A),

ab+ac-bc=a(b+c)-bc 当只有b事件时,a=0,a(b+c)-bc=0 即a(b+c)-bc=a 当不是只有b事件时 (1)有a事件时,b+c<1,则a(b+c)<a,a(b+c)-bc<a (2)无a事件时,a(b+c)-bc=-bc<0,因a=0,a(b+c)-bc<a 综上,a(b+c)-bc<a...

全部展开

ab+ac-bc=a(b+c)-bc 当只有b事件时,a=0,a(b+c)-bc=0 即a(b+c)-bc=a 当不是只有b事件时 (1)有a事件时,b+c<1,则a(b+c)<a,a(b+c)-bc<a (2)无a事件时,a(b+c)-bc=-bc<0,因a=0,a(b+c)-bc<a 综上,a(b+c)-bc<a

收起

根据具体情况分析,比如各个相互独立