1*2*3+2*3*4+3*4*5+···+25*26*27+26*27*28=?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 12:38:49
1*2*3+2*3*4+3*4*5+···+25*26*27+26*27*28=?
xUnPkLL۳Q{[d>@C*ȲE\ʒ9 e8y-Wpmij>C?bdhT3f- ?ЬFs]s=ofWJ[ĘWYl{r,6fvwú |U6WݕϏg^nN{ŝQ轻/UBUD1X>PP{ɴUinH $3"㘭b BOȟ춦MO&jmٰq=l~';eu?U#L tiPJ4 OtB%{]XniZpe-EsEI[/XHӜt|_cڗ^O3cӑo:[Wz[L!T Hk PB) BL<5,·;1(fj2LZAfkVkz /ؒav@\D@ ktWЎ8֖ yUߜ`K?bx5μil>< 63': `ra9Y.҅))9>%CPnHp amp'_-D62p'Yr>3N&Hl;{m|yHխD^>(~>x=Du=N뒞|/\{1u~Ms

1*2*3+2*3*4+3*4*5+···+25*26*27+26*27*28=?
1*2*3+2*3*4+3*4*5+···+25*26*27+26*27*28=?

1*2*3+2*3*4+3*4*5+···+25*26*27+26*27*28=?
观察下的每项都是(n+1)^3-n,你可以一次试试的!
1*2*3+2*3*4+3*4*5+···+25*26*27+26*27*28
= (2³ - 2) + (3³ - 3) + …… + (27³ - 27)
= 1³ + 2³ + 3³ + …… + 27³ - (1+2+3+……+27)
套用连续立方和公式、等差数列求和公式
= (1+2+3+……+27)^2 - (1+27) * 27 / 2
= [(1+27)*27/2]^2-378
=378^2-378
=378*377
=142506

自己用计算器算吧、。。。。。。。。。。

1×2×3=(1/4)×(1×2×3×4)
(1×2×3)+(2×3×4)=2×3×5=(1/4)×(2×3×4×5),
(1/4)×(2×3×4×5)+(3×4×5)=(1/4)×(2×3×4×5)+(1/4)×(3×4×5×4)=(1/4)×(3×4×5×6),
(1/4)×(3×4×5×6)+(4×5×6)=(1/4)×(3×4×5×6)+(1/4)×(4×5×6×4...

全部展开

1×2×3=(1/4)×(1×2×3×4)
(1×2×3)+(2×3×4)=2×3×5=(1/4)×(2×3×4×5),
(1/4)×(2×3×4×5)+(3×4×5)=(1/4)×(2×3×4×5)+(1/4)×(3×4×5×4)=(1/4)×(3×4×5×6),
(1/4)×(3×4×5×6)+(4×5×6)=(1/4)×(3×4×5×6)+(1/4)×(4×5×6×4)=(1/4)×(4×5×6×7),
……
1×2×3+2×3×4+3×4×5+……+26×27×28=(1/4)×(26×27×28×29)=142506。

收起

考察一般项:
n(n+1)(n+2)=n³+3n²+2n

1×2×3+2×3×4+...+n(n+1)(n+2)
=[n(n+1)/2]²+3n(n+1)(2n+1)/6 +2n(n+1)/2
=n²(n+1)²/4 +n(n+1)(2n+1)/2 +n(n+1)
=[n(n+1)/4][n(n+...

全部展开

考察一般项:
n(n+1)(n+2)=n³+3n²+2n

1×2×3+2×3×4+...+n(n+1)(n+2)
=[n(n+1)/2]²+3n(n+1)(2n+1)/6 +2n(n+1)/2
=n²(n+1)²/4 +n(n+1)(2n+1)/2 +n(n+1)
=[n(n+1)/4][n(n+1)+2(2n+1)+4]
=[n(n+1)/4](n²+5n+6)
=n(n+1)(n+2)(n+3)/4

对于本题:
1×2×3+2×3×4+...+26×27×28
=26×27×28×29/4
=142506

用到的公式:
1+2+...+n=n(n+1)/2
1²+2²+...+n²=n(n+1)(2n+1)/6
1³+2³+...+n³=[n(n+1)/2]²

收起