高数-对坐标的曲线积分∫[L]xyzdz,L为圆周x^2+y^2+z^2=1,z=y,面对z轴的正向看去,L的方向依逆时针方向.没错的,就是dz

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 00:30:25
高数-对坐标的曲线积分∫[L]xyzdz,L为圆周x^2+y^2+z^2=1,z=y,面对z轴的正向看去,L的方向依逆时针方向.没错的,就是dz
xRN@,u0"m6lhdaPBRH@B'|U~,PժJ]X9>;ő=w4u0 .Xb%YNChUࠧg><.g_6X#|\uqjP$Ĵ܆﬘YקcT,{}Gnk/(iq(bVo7'Uc1ns1ٓ<$30utzFL0y#|Tf(VSM7ʏ *&1z5 \4_p99F`y7.,K%`z1T2fNFQgN*A?scPFϽ$_ҔRqm#xTZN446w ][&xPuo71x& GjHQ\#ܚ'>D ɪ7B_ '~ ;

高数-对坐标的曲线积分∫[L]xyzdz,L为圆周x^2+y^2+z^2=1,z=y,面对z轴的正向看去,L的方向依逆时针方向.没错的,就是dz
高数-对坐标的曲线积分
∫[L]xyzdz,L为圆周x^2+y^2+z^2=1,z=y,面对z轴的正向看去,L的方向依逆时针方向.
没错的,就是dz

高数-对坐标的曲线积分∫[L]xyzdz,L为圆周x^2+y^2+z^2=1,z=y,面对z轴的正向看去,L的方向依逆时针方向.没错的,就是dz
把y=z代入x^2+y^2+z^2=1得x^2+2y^2=1,所以设x=cost,y=1/√2 sint,所以L的参数方程是:x=cost,y=1/√2 sint,z=1/√2 sint,t的取值是从0到2π
所以,∫(L) xyzdz=∫(0~2π) cost×1/2×(sint)^2×1/√2×cost dt=π/(8√2)

那就是0吧,对每一小段dz,取它关于x轴对称的一段,在这两段上y,z,dz的符号都相反,两两抵消,积分为0.