如图,在平面直角坐标系中,已知点A坐标(2,4),直线x=2与x轴相交于点B,连接OA,抛物线y=x^2从点O沿OA方向平移,与直线x=2交于P,顶点M到A点时停止移动.(1)设抛物线顶点M的横坐标为m①用m的代数式表

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 03:07:15
如图,在平面直角坐标系中,已知点A坐标(2,4),直线x=2与x轴相交于点B,连接OA,抛物线y=x^2从点O沿OA方向平移,与直线x=2交于P,顶点M到A点时停止移动.(1)设抛物线顶点M的横坐标为m①用m的代数式表
xVmSW+wL2a]찙!WG,iS'[M`_P _Aݻ~/}c!HɗL:",s&Y?dD+6V)ir"W˘Wl!c&=0)r ֚VjO=o$Q 637xdB8$3kJy|ժgܭzV{{j0ԗ_WZ-˥8,'[?6J#=){A-cV stAMnTBc@VSR꛲`ڹ竤LIX꼲Kr; نXn4ϞWFB`Hs_܅<ʈcrkO G)fII댂AL&J>c&%&&'Lę_bQqyeop_XI<Ā$y@c9(JQ"H8 ~{y^?z}b KQayX rJ\<^gq9?bGQ%V DD%eWbw_z<" )ko=$`v.dShu~ @ъ[`A9@^`@ZK?:K\qN:QD< H2WWdg 6 zfۂ-ۇvzJFJ翖ȻRO/%i/Cȱ2

如图,在平面直角坐标系中,已知点A坐标(2,4),直线x=2与x轴相交于点B,连接OA,抛物线y=x^2从点O沿OA方向平移,与直线x=2交于P,顶点M到A点时停止移动.(1)设抛物线顶点M的横坐标为m①用m的代数式表
如图,在平面直角坐标系中,已知点A坐标(2,4),直线x=2与x轴相交于点B,连接OA,抛物线y=x^2从点O沿OA方向平移,与直线x=2交于P,顶点M到A点时停止移动.
(1)设抛物线顶点M的横坐标为m
①用m的代数式表示点P的坐标 ②当m为何值时,线段PB最短
(2)当线段PB最短时,相应的抛物线上是否存在点Q,使△QMA的面积与△PMA的面积相等,若存在,请求出点Q的坐标

如图,在平面直角坐标系中,已知点A坐标(2,4),直线x=2与x轴相交于点B,连接OA,抛物线y=x^2从点O沿OA方向平移,与直线x=2交于P,顶点M到A点时停止移动.(1)设抛物线顶点M的横坐标为m①用m的代数式表
24.(本题14分)
(1)设 所在直线的函数解析式为 ,
∵ (2,4),
∴ ,,
∴ 所在直线的函数解析式为 .…………………………………(3分)
(2)①∵顶点M的横坐标为 ,且在线段 上移动,
∴ (0≤ ≤2).
∴顶点 的坐标为( ,).
∴抛物线函数解析式为 .
∴当 时,(0≤ ≤2).
∴点 的坐标是(2,).…………………………………(3分)
② ∵ = = ,又∵0≤ ≤2,
∴当 时,PB最短.……………………………………………(3分)
(3)当线段 最短时,此时抛物线的解析式为 .……………(1分)
假设在抛物线上存在点 ,使 .
设点 的坐标为( ,).
①当点 落在直线 的下方时,过 作直线 // ,交 轴于点 ,
∵ ,,
∴ ,∴ ,∴ 点的坐标是(0,).
∵点 的坐标是(2,3),∴直线 的函数解析式为 .
∵ ,∴点 落在直线 上.
∴ = .
解得 ,即点 (2,3).
∴点 与点 重合.
∴此时抛物线上不存在点 ,使△ 与△ 的面积
相等.……………………………………………………………………(2分)
②当点 落在直线 的上方时,
作点 关于点 的对称称点 ,过 作直线 // ,交 轴于点 ,
∵ ,∴ ,∴ 、 的坐标分别是(0,1),(2,5),
∴直线 函数解析式为 .
∵ ,∴点 落在直线 上.
∴ = .
解得:,.
代入 ,得 ,.
∴此时抛物线上存在点 ,
使△ 与△ 的面积相等.…………………………………(2分)
综上所述,抛物线上存在点 ,
使△ 与△ 的面积相等.

(1)设OA所在直线的函数解析式为y=kx, ∵A(2,4), ∴2k=4, ∴k=2, ∴OA所在直线的函数解析式为y=2x; (2)∵顶点M的横坐标为m,且在线段OA上移动, ∴y=2m(0≤m≤2). ∴顶点M的坐标为(m,2m), ∴抛物线函数解析式为y=(x-m)2+2m. ∴当x=2时,y=(2-m)2+2m=m2-2m+4(0≤m≤2), ∴点P的坐标是(2,m2-2m+4)....

全部展开

(1)设OA所在直线的函数解析式为y=kx, ∵A(2,4), ∴2k=4, ∴k=2, ∴OA所在直线的函数解析式为y=2x; (2)∵顶点M的横坐标为m,且在线段OA上移动, ∴y=2m(0≤m≤2). ∴顶点M的坐标为(m,2m), ∴抛物线函数解析式为y=(x-m)2+2m. ∴当x=2时,y=(2-m)2+2m=m2-2m+4(0≤m≤2), ∴点P的坐标是(2,m2-2m+4).

收起

如图,在平面直角坐标系中,已知点p(1,4),点a在坐标轴上,三角形pao的面积等于4,求点a坐标 已知,如图:在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C、D的坐标分别为(9,0) 如图 在平面直角坐标系中,已知点A坐标为(2,4),直线X=2与X轴相交与点B,连结OA, 如图,已知在平面直角坐标系中,A(-1,3),B(2,1),线段AB交y轴于c点,求C点的坐标. 如图,已知在平面直角坐标系中有直角梯形ABCO,BC‖OA,顶点B的坐标是(2,4),定点A的如图,已知在平面直角坐标系中有直角梯形ABCO,BC∥OA,顶点B的坐标是(2,4),定点A的坐标是(5,0),沿过点A的直线m 已知:如图,在直角梯形COAB中,OC‖AB,以O为原点建立平面直角坐标系,A,B,C三点的坐标分别是已知:如图,在直角梯形COAB中,OC∥AB,以O为原点建立平面直角坐标系,A,B,C三点的坐标分别是A(8,0),B(8,1 如图 在平面直角坐标系中 点o为坐标原点,点A的坐标为(16,12),点B的坐标为(21,0) 如图 在平面直角坐标系中 已知点a(-2,0),b(2,0)画出几个等腰三角形abc,与顶点c的坐标 如图,在平面直角坐标系中,三角形AOB为等腰直角三角形,A(4,4).1,求B点坐标; 如图,在平面直角坐标系中,点A,B坐标分别为(8,4),(0,4), 如图,在平面直角坐标系中,已知三角形ABC的顶点坐标分别是A(-4,2) 如图,在平面直角坐标系中,已知△AOB是等边三角形,点A 的坐标是(0,4),点B在第一象限,点P是x轴上的一如图,在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0,4),点B在第一象 如图,在平面直角坐标系中,点A的坐标是( 1,0),点B的坐标是(0,根号3),点C在如图,在平面直角坐标系中,点A的坐标是( 1,0),点B的坐标是(0,根号3),点C在坐标平面内,若以A,C为顶点 如图,在平面直角坐标系中,已知直角梯形 如图,在平面直角坐标系中,点A C 的坐标分别为(-1,0)(0,-根3)点B在X轴上如图,在平面直角坐标系中,点A,C的坐标分别为(-1,0)(0,-3),点B在X轴上,已知某二次函数的图像经过A,B,C三点,且它的对称轴 如图,在平面直角坐标系中,O是坐标原点,已知点A的坐标系为(1,1).请你在坐标轴上找出点B三角形ABC为 等腰三角形,符合条件的点B共有几个? 如图在平面直角坐标系中,已知三点坐标分别是A(-1,0),B(-2,2),M(0,1).(1)画出线段如图在平面直角坐标系中,已知三点坐标分别是A(-1,0),B(-2,2),M(0,1).(1)画出线段AB关于点M的中心对称图形A1B1,直接写出 特殊三角形——已知,如图,在平面直角坐标系中,O为坐标原点,四边形OABC是长方形已知,如图,在平面直角坐标系中,O为坐标原点,四边形OABC是长方形,点A、B、C、D的坐标分别是A(9,0)、C(0,4)、