如图1,已知双曲线y1=k/x(k>0)与直线y2=k'x交与A,B两点,点A在第一象限,(1)若点A的坐标为(4,2),则点B的坐标为 (-4,-2);当x满足:X<-4或0<X<4时,y1>y2;(2)过原点O作另一条直线l,交双曲

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 07:29:59
如图1,已知双曲线y1=k/x(k>0)与直线y2=k'x交与A,B两点,点A在第一象限,(1)若点A的坐标为(4,2),则点B的坐标为 (-4,-2);当x满足:X<-4或0<X<4时,y1>y2;(2)过原点O作另一条直线l,交双曲
xUrGVyTJQTM6Y(Rb/F;1l`@`$0xxj?Q{F+~!aRvy" {o9tGv7>UAB߿5kT39 F֥w69R2MXb$nMs@ѓKCOYWE2zvνf7zZdg9C&!_:*بnofZ/ rLu*cmjH0&'T@O.w1d_?NOư$$B e6}a^UUk:F,TرwNcw@+.\g*?m-mau<ߩy*g'lóCPE24kߣ7a5 j0Cr\kᔍU4anx&H$4{HY4#4LhPsw[@.&bΝd g vxަ (,#@)͑q>{ BH RF|+#/ Cqb[w_Q$_J-+9v;٪w!&Ywsʸ}TXr/&UI8/yyE9]s ɋZw/yc%k5E@ b Ad+"čYpy]q~ #rUd"hE_0= ~$O^9B:#vٴjf"

如图1,已知双曲线y1=k/x(k>0)与直线y2=k'x交与A,B两点,点A在第一象限,(1)若点A的坐标为(4,2),则点B的坐标为 (-4,-2);当x满足:X<-4或0<X<4时,y1>y2;(2)过原点O作另一条直线l,交双曲
如图1,已知双曲线y1=k/x(k>0)与直线y2=k'x交与A,B两点,点A在第一象限,
(1)若点A的坐标为(4,2),则点B的坐标为 (-4,-2);当x满足:X<-4或0<X<4时,y1>y2;
(2)过原点O作另一条直线l,交双曲线 于P,Q两点,点P在第一象限,如图2所示.
①四边形APBQ一定是 平行四边形;
②若点A的坐标为(3,1),点P的横坐标为1,求四边形APBQ的面积;
③设点A、P的横坐标分别为m、n,四边形APBQ可能是矩形吗?若可能,求m,n应满足的条件;若不可能,请说明理由.

如图1,已知双曲线y1=k/x(k>0)与直线y2=k'x交与A,B两点,点A在第一象限,(1)若点A的坐标为(4,2),则点B的坐标为 (-4,-2);当x满足:X<-4或0<X<4时,y1>y2;(2)过原点O作另一条直线l,交双曲
数与形相结和,理解正比例函数与反比例函数的性质,并对函数的性质灵活运用,同时也训练了平形四边形和矩行的相关性质.点A与点B关于原点对称,所以B点坐标为(-4,-2),在第三象限当x<-4时y1>y2,在第一象限当0<x<4时y1>y2.由对角线互相平分的四边形是平行四边形可证明APBQ是平行四边形.平行四边形的对角线把它分成四个面积相等的三角形,所以只要求出△AOP的面积,再将其乘以4就可以得到APBQ的面积.根据对角线相等的平行四边形是矩形可知,当mn=k时OP=OA,此时APBQ是矩形.
(1)因为正比例函数与反比例都关于原点成中心对称,所以B点的坐标为B(-4,-2);由两个函数都经过点A(4,2),可知双曲线的解析式为y1= 8x,直线的解析式为y2= 12x,双曲线在每一象限y随x的增大而减小,直线y随x的增大而增大,
所以当x<-4或0<x<4时,y1>y2.
(2)证明:∵正比例函数与反比例函数都关于原点成中心对称,
∴OA=OB,OP=OQ,根据对角线互相平分的四边形是平行四边形可知APBQ一定是平行四边形.
②∵A点的坐标是(3,1)
∴双曲线为y= 3x,
所以P点坐标为(1,3),
过A作x轴的垂线可得直角梯形,再过P做垂线的垂线,
用直角梯形的面积减去直角三角形的面积可得三角形POA的面积为4,再用4×4得四边形APBQ为16.
③当mn=k时,OA=OP,对角线相等且互相平分的四边形是矩形,所以四边形APBQ是矩形

东林的?