已知椭圆x^2/2 y^2=1右焦点f,直线l经过点f,与椭圆交于a,b且|ab|=4倍的根号2/3,(1)求直线l的方程(2要具体过程,谢了

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 14:54:23
已知椭圆x^2/2 y^2=1右焦点f,直线l经过点f,与椭圆交于a,b且|ab|=4倍的根号2/3,(1)求直线l的方程(2要具体过程,谢了
xSj@W&>4͏B.[i/V IjZ\pSZ'JK;n|/t#v '̼mlяY:*OBܑ<qvݝݶt& ! IǷm1篲Az: {>m;t_ʨjo] _QM|qlϾJ&Gn[_s.klЋnt煬GE:f^ܐ]Sp>nW;:-Q4qZFԸu#:+TgyxQ޼O ɑferLU4QWA@A5x EN{(@%A fB 56,ʀm{g`R&,PCu#qnHF f̍:zê©A> `b}J瞗esgQVV

已知椭圆x^2/2 y^2=1右焦点f,直线l经过点f,与椭圆交于a,b且|ab|=4倍的根号2/3,(1)求直线l的方程(2要具体过程,谢了
已知椭圆x^2/2 y^2=1右焦点f,直线l经过点f,与椭圆交于a,b且|ab|=4倍的根号2/3,(1)求直线l的方程(2
要具体过程,谢了

已知椭圆x^2/2 y^2=1右焦点f,直线l经过点f,与椭圆交于a,b且|ab|=4倍的根号2/3,(1)求直线l的方程(2要具体过程,谢了
x^2/2 + y^2=1
a=根号2,b=1
c=根号(a^2-b^2)=根号(2-1)=1
右焦点坐标f(1,0)
设直线斜率k,直线y=kx+b
0=k+b,b=-k
y=kx-k,代入x^2/2 + y^2=1得:
x^2/2+(kx-k)^2=1
(2k^2+1)x^2 - 4k^2x + 2(k^2-1) =0
判别式△=(4k^2)^2-4(2k^2+1)*2(k^2-1)=8(k^2+1)
x=(4k^2±根号△)/[2(2k^2+1)]={(4k^2±2根号[(2(k^2+1)]} / [2(2k^2+1)]
={2k^2±根号[(2(k^2+1)]} / (2k^2+1)
|x2-x1|=2根号[(2(k^2+1)] / (2k^2+1)
y=kx-k
|y2-y1|=|k(x2-x1)|= |2k根号[(2(k^2+1)] / (2k^2+1)|
|ab|=4根号2/3
(ab)^2=32/9
(x2-x1)^2+(y2-y1)^2=32/9
{2根号[(2(k^2+1)] / (2k^2+1)}^2 + {2k根号[(2(k^2+1)] / (2k^2+1)}^2 =32/9
4(k^2+1)*2(k^2+1)/(2k^2+1)^2=32/9
(k^2+1)^2=4/9 (2k^2+1)^2
(k^2+1)/(2k^2+1)=2/3
(k^2+1)/k^2=2/1
2k^2=k^2+1
k^2=1
k=±1
直线方程:y=-x+1,或y=x-1