,已知抛物线 y=x2-4x+3与x 轴交于两点A、B,其顶点为C.(1)对于任意实数m,点M(m,-2)是否在该抛物线上?请说明理由;(2)求证:△ABC是等腰直角三角形;(3)已知点D在x轴上,那么在抛物线上是否

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 12:53:01
,已知抛物线 y=x2-4x+3与x 轴交于两点A、B,其顶点为C.(1)对于任意实数m,点M(m,-2)是否在该抛物线上?请说明理由;(2)求证:△ABC是等腰直角三角形;(3)已知点D在x轴上,那么在抛物线上是否
xUMSG+>J+ҒҬ)* c)H6'Y)kD]rL~&8ޫ#V_3suviHC/NB4zu{p)u;ְWQhKn?y/°WgÞ-qcs^mh}"u>h\򽢷>*#EX:b̫\-:gׯk"@4dͿmKToW>FT/'`{Xǎ,K{D/_`jU*ơrwB++~!RQ YLݍbrvq>?%W 74Ny*ATw"YɉGGhg*ksQDcE -Ge˼ˆ"yئ"e`*y/1VzXiI;|RFf lzպ 0^ŁI/P3/bA_*zptMᧇzǞ7TAN|+0~o& |t؀w3Xؗq\@2 DhQ<2Bk`ےȔL@3 &^^P˳JOK/]a7?͜n)*V{tVCyT C0Mӑ11[|zr ;ais樍P`ȸ$Kq=R8 r G˘$cZSW?HQXH2uO,@$2b21m<zg^mA`ۨz/ߨՌv X=f?}q$(_(l%O x)oP%Ok*BP~PBe>tE!E2KF\ɈM?>[Tɞr{WNc')߾OuڜNc_u;

,已知抛物线 y=x2-4x+3与x 轴交于两点A、B,其顶点为C.(1)对于任意实数m,点M(m,-2)是否在该抛物线上?请说明理由;(2)求证:△ABC是等腰直角三角形;(3)已知点D在x轴上,那么在抛物线上是否
,已知抛物线 y=x2-4x+3与x 轴交于两点A、B,其顶点为C.
(1)对于任意实数m,点M(m,-2)是否在该抛物线上?请说明理由;
(2)求证:△ABC是等腰直角三角形;
(3)已知点D在x轴上,那么在抛物线上是否存在点P,使得以B、C、D、P为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.

,已知抛物线 y=x2-4x+3与x 轴交于两点A、B,其顶点为C.(1)对于任意实数m,点M(m,-2)是否在该抛物线上?请说明理由;(2)求证:△ABC是等腰直角三角形;(3)已知点D在x轴上,那么在抛物线上是否
(1)令x^2-4x+3=-2,方程无实根,所以不在该抛物线上
(2)不难求得A(1,0),B(3,0),C(2,-1),AC=BC=√2,AB=2,符合勾股定理,故为等腰直角三角形
(3)假设BCDP为平行四边形,那么BD为对角线,C点和P点到BD的距离应该相等,BD即X轴,C点到BD距离为1,所以P点的Y坐标为1,令x^2-4x+3=1,解此方程即可求得P点坐标(有两个).

(1)假如点M(m,-2)在该抛物线上,
∴-2=m2-4m+3,
∴m2-4m+5=0,
∴△=(-4)2-4×1×5=-4<0,
∴此方程无实数解,
∴点M(m,-2)不会在该抛物线上;
(2)如图,当y=0时,x2-4x+3=0,x1=1,x2=3,由于点A在点B左侧,
∴A(1,0),B(3,0)
∴OA=1,OB=3,

全部展开

(1)假如点M(m,-2)在该抛物线上,
∴-2=m2-4m+3,
∴m2-4m+5=0,
∴△=(-4)2-4×1×5=-4<0,
∴此方程无实数解,
∴点M(m,-2)不会在该抛物线上;
(2)如图,当y=0时,x2-4x+3=0,x1=1,x2=3,由于点A在点B左侧,
∴A(1,0),B(3,0)
∴OA=1,OB=3,
∴AB=2
∵y=x2-4x+3
∴y=(x-2)2-1,
∴C(2,-1),
∴AH=BH=CH=1
在Rt△AHC和Rt△BHC中,由勾股定理得,
AC=,BC=,
∴AC2+BC2=AB2,
∴△ABC是等腰直角三角形;
(3)存在这样的点P.
根据对角线互相平分的四边形是平行四边形,因此连接点P与点C的线段应被x轴平分,
∴点P的纵坐标是1,
∵点P在抛物线y=x2-4x+3上,
∴当y=1时,即x2-4x+3=1,解得x1=2-,x2=2+,
∴点P的坐标是(2-,1)或(2+,1).

收起

(1)假如点M(m,-2)在该抛物线上,
∴-2=m2-4m+3,
∴m2-4m+5=0,
∴△=(-4)2-4×1×5=-4<0,
∴此方程无实数解,
∴点M(m,-2)不会在该抛物线上;
(2)如图,当y=0时,x2-4x+3=0,x1=1,x2=3,由于点A在点B左侧,
∴A(1,0),B(3,0)
∴OA=1,OB=3,

全部展开

(1)假如点M(m,-2)在该抛物线上,
∴-2=m2-4m+3,
∴m2-4m+5=0,
∴△=(-4)2-4×1×5=-4<0,
∴此方程无实数解,
∴点M(m,-2)不会在该抛物线上;
(2)如图,当y=0时,x2-4x+3=0,x1=1,x2=3,由于点A在点B左侧,
∴A(1,0),B(3,0)
∴OA=1,OB=3,
∴AB=2
∵y=x2-4x+3
∴y=(x-2)2-1,
∴C(2,-1),
∴AH=BH=CH=1
在Rt△AHC和Rt△BHC中,由勾股定理得,
AC=,BC=,
∴AC2+BC2=AB2,
∴△ABC是等腰直角三角形;
(3)存在这样的点P.
根据对角线互相平分的四边形是平行四边形,因此连接点P与点C的线段应被x轴平分,
∴点P的纵坐标是1,
∵点P在抛物线y=x2-4x+3上,
∴当y=1时,即x2-4x+3=1,解得x1=2-,x2=2+,
∴点P的坐标是(2-,1)或(2+,1).

收起

已知抛物线Y=X2-MX+M-2那么抛物线与X轴交点个数是多少 、已知抛物线y=(1-m)x2+4x-3开口向下,与x轴交于A(x1,0)和B(x2,0)两点,其中xl 已知抛物线Y=X2平方-2X-8.试说明抛物线与X轴一定有两个交点? 已知抛物线Y=X2-(m-3)X-m 试证:无论m为何值,抛物线与x轴总有两个交点 已知抛物线y=x2+mx+2m-m2 抛物线与x轴两个交点间的距离为4倍根号3,求m 已知抛物线y=x2+KX-3/4K2(k为常数,且k>0) 1、证明:此抛物线与x轴有两个交点 已知抛物线y=x2+KX-3/4K2(k为常数,且k>0) 1、证明:此抛物线与x轴有两个交点 (1)抛物线y=2x2-5x+2,指出x为多少,y为多少(2)抛物线y=x2-2x-4与y轴交点坐标是多少(3)已知抛物线y=2x2+bx+c的顶点坐标为(3,-1)则b为多少,c为多少 已知抛物线y=x2+bx+c过原点,抛物线与x轴两交点间的距离为3,求抛物线的解析式. 已知抛物线y=x平方-2x+m与x轴交于点A(x1,0)B(x2,0) (X2>X1) 若抛物线y=ax平方+bx+m与抛物线y=x平方-2x+m已知抛物线y=x平方-2x+m与x轴交于点A(x1,0)B(x2,0) (X2>X1)若抛物线y=ax平方+bx+m与抛物线y=x平方-2x+m关 已知,抛物线Y=-X2+BX+C与X,Y轴交与A(-1,0)B(0,3),顶点为D,(1)求抛物线的解析式. 已知抛物线y=-x2+bx+c与x轴的两个交点分别为A(x1,0),B(x2,0),且x1+x2=4,x1x2=3,(1)求此抛物线的解析已知抛物线y=-x2+bx+c与x轴的两个交点分别为A(x1,0),B(x2,0),且x1+x2=4,x1x2=3,(1)求此抛物线的解析式;(2)设此 已知抛物线y=x2-2x+m与x轴交于点A(x1,0),B(x2,0)(x2>x1)(1)若点P(-1,2)在抛物线y=x2-2x+m上,求m的值(2)若抛物线y=ax2+bx+m与抛物线y=x2-2x+m关于y轴对称,点Q1(-2,q1)Q2(-3,q2)都在抛物线y=ax 已知抛物线C1:y=x2-4x-3,求关于x轴对称的抛物线C2的解析式 抛物线y=x2+2x-3与x轴交点坐标之间的距离是 求抛物线y=x2-3x+m与x轴的焦点数 抛物线y=x2+2x-3与x轴的交点的个数为多少 抛物线Y=X2+(M+2)X+3(M-1)与x轴交点的个数