1/1x2+1/2x3+1/3x4+.+1/n(n+1)=?1/2x4+1/4x6+1/6x8+…+1/2010x2012
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 22:26:43
1/1x2+1/2x3+1/3x4+.+1/n(n+1)=?1/2x4+1/4x6+1/6x8+…+1/2010x2012
1/1x2+1/2x3+1/3x4+.+1/n(n+1)=?
1/2x4+1/4x6+1/6x8+…+1/2010x2012
1/1x2+1/2x3+1/3x4+.+1/n(n+1)=?1/2x4+1/4x6+1/6x8+…+1/2010x2012
1/1x2+1/2x3+1/3x4+.+1/n(n+1)
=1-1/2+1/2-1/3+1/3-1/4+···+1/n-1/(n+1)
=1-1/(n+1)
=n/(n+1)
1/1x2+1/2x3+1/3x4+......+1/n(n+1)=1-1/2+1/2-1/3+1/3-1/4......+1/n-1/(n+1)=1-1/(n+1)=n/(n+1)
1/n(n+1)=1/n-1/(n+1)
所以1/1x2+1/2x3+1/3x4+......+1/n(n+1)=1-1/2+1/2-1/3+……+1/n-1/(n+1)=1-1/n
1/2x4+1/4x6+1/6x8+…+1/2010x2012 =1/2(1/2-1/4+1/4-1/6+……+1/2010-1/2012)=1/2×(1/2-1/2012)=1005/4024
原式=1-1/2+1/2-1/3+1/3-1/4+...+1/n-1/(n+1)=1-1/(n+1)
原式=1-1/2+(1/2-1/3)+(1/3-1/4)+。。。。+(1/n-1/(n+1))=1-1/2+1/2-1/3+......+1/n-1/(n+1)=1-1/(n+1)=n/(n+1)
由公式 1/nx(n+m)=m(1/n-1/n+m)
所以1、1/1-1/2+1/2-1/3+1/3-1/4.......................1/n-1/n+1=1-1/n+1=n/n+1 (中间的每2项可以消去)
2、2(1/2-1/4+1/4-1/6......................1/2010-1/2012)=2*(1/2-1/2012)=1-1/1006=1005/1006