已知函数f(x)=1/2x^2-3x+2lnx,证明对任意x1、x2∈(0,+∞),当X1>X2时,不等式f(x1)-f(x2)>x2-x1恒成立

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 06:17:57
已知函数f(x)=1/2x^2-3x+2lnx,证明对任意x1、x2∈(0,+∞),当X1>X2时,不等式f(x1)-f(x2)>x2-x1恒成立
xQMK@+6I=EJ( 5RK*BEIUf7O{͛x>rlEM7ЄZ4cΊ,k",#2ѨcO۔A?[Kyqزa6REtRyΊy+M=yLw&nU+L4 ,oz**_"s IQ96ySk@Lp!f

已知函数f(x)=1/2x^2-3x+2lnx,证明对任意x1、x2∈(0,+∞),当X1>X2时,不等式f(x1)-f(x2)>x2-x1恒成立
已知函数f(x)=1/2x^2-3x+2lnx,证明对任意x1、x2∈(0,+∞),当X1>X2时,不等式f(x1)-f(x2)>x2-x1恒成立

已知函数f(x)=1/2x^2-3x+2lnx,证明对任意x1、x2∈(0,+∞),当X1>X2时,不等式f(x1)-f(x2)>x2-x1恒成立
就是x1>x2时,f(x1)+x1>f(x2)+x2
g(x)=f(x)+x 就是要证明:g(x)在x>0时,是增的.
g(x)=1/2x^2-2x+2lnx
g'(x)=x-2+2/x>=2*根号(x*2/x)-2>=2根号2-2>0 x>0
所以g(x)在x>0时递增.
所以x1>x2>0时
g(x1)>g(x2)
即:f(x1)+x1>f(x2)+x2
不等式f(x1)-f(x2)>x2-x1恒成立