如图,二次函数y=ax²+bx+c(a≠0)的图像与x轴交于A、B两点,与y轴相交于点C,连接AC、BC,A、C两点的坐标为A(-3,0)、C(0,根号3),且当x=-4和x=2时二次函数的函数值等.(1)求二次函数解析式(2

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 02:16:25
如图,二次函数y=ax²+bx+c(a≠0)的图像与x轴交于A、B两点,与y轴相交于点C,连接AC、BC,A、C两点的坐标为A(-3,0)、C(0,根号3),且当x=-4和x=2时二次函数的函数值等.(1)求二次函数解析式(2
xVnF$%^4mDjۇhl2@wID ډ/jRGR %* ms̙]fF*4vVV9.E=2=٭'#!׭ѢYl\hc i걱PeQP Œ:г'0ƅ 8釫Z zp^lVr-_De hc]}3f(Q7S> a^Yp̳A0 jVn1N 1=r&ZCO _nNbm eFBS\Aﭐ%DlVV ZsMM̕,ͦq1x`r 6h_:yE=MR6tv.@wQT^i[qalh]ǮϗI5^144$5KԑC^ܺ"ǐR8+㲫i}r|FkPsD a 'iXSSjP0z[h>`0f1;"Lh.ݬ[16+f$?TޟVғGMJd^tZi#0# هIA`z>"Q,P~\mjw1:Hd[p&}H)_#ֱ+U 3`o-OYvNerxBal.Z+4oY8y?@Btfk aMRJ ck7B*%r07aTL {p[C|?;y>bـ5}7=sv% [9'DLjKdjN^o}wBpZ`L}I93\pyn^哾"]*JqE0T??TP_XY`XxM?뺵1A8!8ѣpUϬ( 46|ABbUP=Rg@[btPbS2S}):*q?{N|X; D%l&>.%Y}ƒgސ|13x>P^Vab/q zr0;+zZ!D<@G

如图,二次函数y=ax²+bx+c(a≠0)的图像与x轴交于A、B两点,与y轴相交于点C,连接AC、BC,A、C两点的坐标为A(-3,0)、C(0,根号3),且当x=-4和x=2时二次函数的函数值等.(1)求二次函数解析式(2
如图,二次函数y=ax²+bx+c(a≠0)的图像与x轴交于A、B两点,与y轴相交于点C,连接AC、BC,A、C两点的坐标为A(-3,0)、C(0,根号3),且当x=-4和x=2时二次函数的函数值等.
(1)求二次函数解析式
(2)若点M、N同时从B点出发,均以每秒1个单位长度分别沿BA、BC边运动,其中一个点到达终点时,另一点也随之停止运动.
当运动时间为t秒时,连接MN,将⊿BMN沿MN翻折,B点恰好落在AC边上的P处,求t的值及P的坐标;
二次函数图像的对称轴上是否存在点Q,使得以B、N,Q为顶点的三角形与⊿ABC相似?如果存在,请求出点Q的坐标;如果不存在,请说明理由.

如图,二次函数y=ax²+bx+c(a≠0)的图像与x轴交于A、B两点,与y轴相交于点C,连接AC、BC,A、C两点的坐标为A(-3,0)、C(0,根号3),且当x=-4和x=2时二次函数的函数值等.(1)求二次函数解析式(2
二次函数y=ax²+bx+c(a≠0)的图像与x轴交于A、B两点,A、C两点的坐标为A(-3,0)、C(0,根号3),9a-3b+c=0 c=√3
当x=-4和x=2时二次函数的函数值等16a-4b+c= 4a+2b+c
由上面三式得:a= - √3 /3 b= - 2√3 /3 c=√3
(1)二次函数解析式y= - √3 /3x²- 2√3 /3 x+√3 即:3y= - √3 x²- 2√3 x + 3√3
(2)B点横坐标为:3-(- 2√3 /3)/(- √3 /3)=1
tan∠ABC=√3 ∠ABC=60° ∠ABP=30°直线BP斜率:tan150°= -√3 /3
且直线BP过点B(1,0) 可得直线BP:y= -√3 /3 x + √3 /3
可求出:P(-2,√3) t=(1+2)/2=1.5
二次函数图像的对称轴x= -1

tudoumeiyou

(1)∵A(-3,0),B(1,0),C(0,3),
∴设二次函数的解析式为:y=a(x+3)(x-1)(a≠0),
将点C(0,3)代入函数解析式得:3=-3a,
∴a=-1,
∴此二次函数的解析式为:y=-(x+3)(x-1)=-x2-2x+3=-(x+1)2+4,
∴此二次函数的对称轴为:x=-1,
∵点C、D是二次函数图象上的一对对称点,

全部展开

(1)∵A(-3,0),B(1,0),C(0,3),
∴设二次函数的解析式为:y=a(x+3)(x-1)(a≠0),
将点C(0,3)代入函数解析式得:3=-3a,
∴a=-1,
∴此二次函数的解析式为:y=-(x+3)(x-1)=-x2-2x+3=-(x+1)2+4,
∴此二次函数的对称轴为:x=-1,
∵点C、D是二次函数图象上的一对对称点,
∴D(-2,3),
∴设直线BD的解析式为:y=kx+b(k≠0),
∴k+b=0-2k+b=3​,
解得:k=-1b=1​,
∴此一次函数的解析式为:y=-x+1;
(2)根据图象得:
一次函数值大于二次函数值的x的取值范围为:x<-2或x>1.

收起

1)
a*(-4)^2+b*(-4)+c=a*2^2+2*b+c
0=a*(-3)^2+b*(-3)+c
√3=a*0^2+b*0+c
联立解方程得:
a=-√3/3,b=-2√3/3,c=√3
解析式为:y=-√3/3x^2-2√3/3x+√3
2)
又抛物线解析式可以求出B点坐标为(1,0)
直线AB方程为:y-0=(√3...

全部展开

1)
a*(-4)^2+b*(-4)+c=a*2^2+2*b+c
0=a*(-3)^2+b*(-3)+c
√3=a*0^2+b*0+c
联立解方程得:
a=-√3/3,b=-2√3/3,c=√3
解析式为:y=-√3/3x^2-2√3/3x+√3
2)
又抛物线解析式可以求出B点坐标为(1,0)
直线AB方程为:y-0=(√3-0)/(0-1)(x-1)
即y=-√3(x-1),tanα=-√3,α=120°
M点坐标:(1-tsinα,(√3+tcosα)
N点坐标:(1-t,0)

收起