如图,直线y=-x-2交x轴于点A,交y轴于点B,抛物线y=ax²+bx+c的顶点为A,且经过点B. 1.求该抛物线的解
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 15:26:27
x͒J@_e@( 4 (S*$]R!ٕB./Uz(B]$ĕf59(|NOӨQo~1E?FY|Q
/I$NY!Cb/VlP U2ISxCe>B,4acR"-EˢOٽ#
如图,直线y=-x-2交x轴于点A,交y轴于点B,抛物线y=ax²+bx+c的顶点为A,且经过点B. 1.求该抛物线的解
如图,直线y=-x-2交x轴于点A,交y轴于点B,抛物线y=ax²+bx+c的顶点为A,且经过点B. 1.求该抛物线的解
如图,直线y=-x-2交x轴于点A,交y轴于点B,抛物线y=ax²+bx+c的顶点为A,且经过点B. 1.求该抛物线的解
y=-x-2交x轴于点A,y=0=-x-2,x=-2 A的坐标为(-2,0)
交y轴于点B,x=0,y=-2 B的坐标为(0,-2)
y=ax²+bx+c
=a(x+b/(2a))^2+c-b^2/(4a)
顶点为 (-b/(2a),c-b^2/(4a) ) 为A
-b/(2a),=-2 ,b=4a
c-b^2/(4a)=0,c=4a
抛物线过点B,所以 -2=c
a=-1/2,b=-2
抛物线为 y=-1/2x^2-2x-2
∵y=-x-2交x轴于点A
∴y=0=-x-2, x=-2
∴A的坐标为(-2,0)
∵交y轴于点B
∴x=0, y=-2
∴B的坐标为(0,-2)
设y=a(x+m)²+k
∴y=a(x+2)²+0
把B(0,-2)代入解析式,得a=-1/2
∴y=1/2(x+2)²+0
这题挺简单
因为顶点在X(-2,0)轴上,所以交点为(-2,0).