有关 余数 P(x)=x^5 + x^4 + ax^2 + x + b 除以 x^2 + x + 1 所得余数为x+2.求 a、b 的值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 21:30:16
有关 余数 P(x)=x^5 + x^4 + ax^2 + x + b 除以 x^2 + x + 1 所得余数为x+2.求 a、b 的值
x){6if'{g>A!@BӶ"TA["H&V8@r'* u6<7Ɏ]Fz66)$>nhLRx>i"}4kB԰ b6v6t.3m5L<<X(f Q UH҄._7Z#QP"l$C]/XH.P6 &xC% @ьn,<4 uI@EHEm!|hkdkl_\gGmh

有关 余数 P(x)=x^5 + x^4 + ax^2 + x + b 除以 x^2 + x + 1 所得余数为x+2.求 a、b 的值
有关 余数
P(x)=x^5 + x^4 + ax^2 + x + b 除以 x^2 + x + 1 所得余数为x+2.
求 a、b 的值

有关 余数 P(x)=x^5 + x^4 + ax^2 + x + b 除以 x^2 + x + 1 所得余数为x+2.求 a、b 的值
x^5 + x^4 + ax^2 + x + b=(x^2 + x + 1)× x^3-(x^3 - ax^2 - x - b)
x^3 - ax^2 - x - b=(x^2 + x + 1)× x-[(a+1)x^2 + 2x + b]
(a+1)x^2 + 2x + b=(x^2 + x + 1)×(a+1)-[(a-1)x+(a+1-b)]
所以P(x)=x^5 + x^4 + ax^2 + x + b=(x^2 + x + 1)× [x^3-x+(a+1)]-[(a-1)x+(a+1-b)]
余数为(1-a)x+b-a-1
所以1-a=1
b-a-1=2
a=0,b=3