试说明数11...1(n个)22...2(n个)是两个相邻正整数的乘积最好有过程,并说明下~先谢过了~(附3根鸡毛~十万火急~)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 22:30:18
试说明数11...1(n个)22...2(n个)是两个相邻正整数的乘积最好有过程,并说明下~先谢过了~(附3根鸡毛~十万火急~)
试说明数11...1(n个)22...2(n个)是两个相邻正整数的乘积
最好有过程,并说明下~先谢过了~(附3根鸡毛~十万火急~)
试说明数11...1(n个)22...2(n个)是两个相邻正整数的乘积最好有过程,并说明下~先谢过了~(附3根鸡毛~十万火急~)
我就再做一遍:
后面为2,只能是2*6或3*4或1*2,而处于个位时只能是3和4
10*10^(2n-2)
11...1(n个)22...2(n个)=11...1(n个)*(10...0(n-1个0)2)=11....1*3*(10...0(n-1个0)2)/3=33...3*33...4
11...122...2
1有N个,2有N个,...表示n个
11...122...2
=11...1*10^n+2*11...1
=11...1(10^n+2)
=1/9(99...9)(10^n+2)
=1/9(10^n-1)(10^n+2)
=1/3(10^n-1)*[1/3(10^n-1+3)]
=1/3(10^n-1)*[1...
全部展开
11...122...2
1有N个,2有N个,...表示n个
11...122...2
=11...1*10^n+2*11...1
=11...1(10^n+2)
=1/9(99...9)(10^n+2)
=1/9(10^n-1)(10^n+2)
=1/3(10^n-1)*[1/3(10^n-1+3)]
=1/3(10^n-1)*[1/3(10^n-1)+1]
因为原式由N个1和N个2组成,所以它是3的倍数,那么1/3(10^n-1)*[1/3(10^n-1)+1]是整数,且1/3(10^n-1)和1/3(10^n-1)+1刚好是相邻的两个数.
所以原式得证.
收起