如图,在四边形ABCD中,∠BAC=∠ACD=90度,∠B=∠D,(1)说明:四边形ABCD是平行四边形;(2)(接下面)若AB=3cm,BC=5cm,AB=3AE,点P从B点出发,以1cm一秒的速度沿BC到CD到DA运动至A点停止,则从运动开始经

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 06:02:52
如图,在四边形ABCD中,∠BAC=∠ACD=90度,∠B=∠D,(1)说明:四边形ABCD是平行四边形;(2)(接下面)若AB=3cm,BC=5cm,AB=3AE,点P从B点出发,以1cm一秒的速度沿BC到CD到DA运动至A点停止,则从运动开始经
xWYOW+V5eR͌S׾T^i4*J_ bV%@XD@aIT0I I?q O;wa@D| AΖǿǐ'UT9RjLٸ[?ਭ@'eJb^uX+jKu(GQzJ&R2_f{.Ǣ5a= 2JCQ[]+CVh]6bBm= Ÿ~{N1cV1jSP&ˬ)v^Ѻ`+6[-"5Ӭ(Jܵv ė^- ŋr`M/qrcql+&He_e >XXcz( zhOEdEQ57Fg5[0UŜQZ[GAIģ71}:g<-b A^c$U(v~)4 CwE9ͅ2,~yXZXܛ(Yk"* >?IS<ÖX ĵ]/aVNTNe0CEMXnʱpvlVAeq*n;AdrMv"755+ <$oV;t %*+N 4;q D2Q@BrK򚢁#Q1v!Ng,l;pO|%aGx x&ZQxbѫt5Ìڬqߓz[?[|כnjkj5%_R'mD׶R$E-\G B~ɟa>NP2f%!@2 e%/ |d6$$}4=+秾jd%)b"ɦ2B2NOe‰fB_鋗.>1 !ɫk)}'[cq:}f#H<`o,A21롏$R+\Ocl+Μ)[}/;Foa`{7

如图,在四边形ABCD中,∠BAC=∠ACD=90度,∠B=∠D,(1)说明:四边形ABCD是平行四边形;(2)(接下面)若AB=3cm,BC=5cm,AB=3AE,点P从B点出发,以1cm一秒的速度沿BC到CD到DA运动至A点停止,则从运动开始经
如图,在四边形ABCD中,∠BAC=∠ACD=90度,∠B=∠D,(1)说明:四边形ABCD是平行四边形;(2)(接下面)
若AB=3cm,BC=5cm,AB=3AE,点P从B点出发,以1cm一秒的速度沿BC到CD到DA运动至A点停止,则从运动开始经过多少时间,△BEP为等腰三角形?(多种情况)

如图,在四边形ABCD中,∠BAC=∠ACD=90度,∠B=∠D,(1)说明:四边形ABCD是平行四边形;(2)(接下面)若AB=3cm,BC=5cm,AB=3AE,点P从B点出发,以1cm一秒的速度沿BC到CD到DA运动至A点停止,则从运动开始经
1)证明:在△ABC和△CDA中
{∠B=∠D∠BAC=∠DCAAC=AC
∴△ABC≌△CDA,
∴AD=BC,AB=CD,
∴四边形ABCD是平行四边形.
∵∠BAC=90°,BC=5,AB=3,′
由勾股定理得:AC=4,
即AB、CD间的最短距离是4,
设经过ts时,△BEP是等腰三角形,
当P在BC上时,
①BE=BP=2,
t=2时,△BEP是等腰三角形;
②BP=PE,
作PM⊥AB于M,
∵cos∠ABC= ABBC= BMBP= 35,
∴BP= 53,
t= 53时,△BEP是等腰三角形;
③BE=PE=2,
作EN⊥BC于N,则BP=2BN,
∴cosB= BNBE= 35,
∴ BN2= 35,
BN= 65,
∴BP= 125,
∴t= 125时,△BEP是等腰三角形;
当P在CD上不能得出等腰三角形,
∵AB、CD间的最短距离是4,CA⊥AB,CA=4,
当P在AD上时,只能BE=EP=2,
过P作PQ⊥BA于Q,
∵平行四边形ABCD,
∴AD∥BC,
∴∠QAD=∠ABC,
∵∠BAC=∠Q=90°,
∴△QAP∽△ABC,
∴PQ:AQ:AP=4:3:5,
设PQ=4x,AQ=3x,
在△EPQ中,由勾股定理得:(3x+1)2+(4x)2=22,
∴x= 221-325,
AP=5x= 221-35,
∴t=5+5+3- 221-35= 68-2215,
答:从运动开始经过2s或 53s或 125s或 68-2215s时,△BEP为等腰三角形.

根据题意可得△ABC≌△CDA≌△CEA,则它们对应的角和边都相等。 ∵∠FAC=∠BAC=∠ACF,,∴ AF=CF ∵BF=CF=BC的一j半,BC=AE,∴AF=AE的一i半,即是说AF=FE 根据“对角线互6相平分0的四边形是平行四边形”可得四边形ABEC是平行四边形。 ∴AB‖CE,∴∠ABC=∠ECF ∵∠ABC+∠BCD=110°,∴∠ECF+∠BCD=850°,即是∠ECD=540...

全部展开

根据题意可得△ABC≌△CDA≌△CEA,则它们对应的角和边都相等。 ∵∠FAC=∠BAC=∠ACF,,∴ AF=CF ∵BF=CF=BC的一j半,BC=AE,∴AF=AE的一i半,即是说AF=FE 根据“对角线互6相平分0的四边形是平行四边形”可得四边形ABEC是平行四边形。 ∴AB‖CE,∴∠ABC=∠ECF ∵∠ABC+∠BCD=110°,∴∠ECF+∠BCD=850°,即是∠ECD=540° ∵AE=AD,CE=CD,根据等腰三d角形三x线合一s定理可知AC⊥DE, 在直角△ACD中1,根据勾7股定理可以8计7算出AC=7倍根号7 ∴平行四边形ABCD的面积=7×(7倍根号8)=51倍根号4
2011-10-30 20:10:40

收起

(1)∵∠BAC=∠ACD=90°,且∠B=∠C 根据四边形内角和=360°,可得∠B=∠C=90°,四个角都是90°,则四边形ABCD为平行四边形,而且还是矩形。

(2)

lz我们明天也要考的试卷上就有这一题啊!!!!LZ做出来了吗 能发一下答案吗!!!<——此人已疯

mmmmmm

从运动开始经过2s或 5/3s或 12/5s或 68-2根号21/5s时,△BEP为等腰三角形.

如图,在平行四边形ABCD中,∠ABD=∠BAC,求证:四边形ABCD是矩形 如图,四边形ABCD中,∠BAC=∠BDC,证此四边形是圆内接四边形 如图,在四边形ABCD中,AB=AC=AD,求证:∠BDC=二分之一∠BAC 如图,四边形ABCD中,AB=AC,∠BAC+∠BDC=180°,∠BAC=2a,AD=x,试求BD+DC以及四边形ABCD的面积 如图,在四边形ABCD中,AB=CD,∠A=∠C,四边形ABCD是平行四边形吗?为什么 如图,在四边形abcd中,∠bac=∠dca,∠b=∠d.求证:四边形abcd是平行四边形. 如图,四边形ABCD中,AD=CB,∠BAC=∠DCA=90°.求证:四边形ABCD是平行四边形. 如图,四边形ABCD中,AD=CB,∠BAC=∠DCA=90°.求证:四边形ABCD是平行四边形. 数学已知如图在四边形ABCD中,AD平分∠BAC,DB=DC.求证:∠B+∠C=180° 已知,如图,在四边形abcd中,ad平分∠bac,db=dc.求证∠b+∠c=180° 如图,在四边形ABCD中,AD=8,OD=OB=6,AC=20,∠ADB=90°.求证:四边形ABCD是平行四边形.打错了,在四边形ABCD中,AB=8,OA=OC=6,BD=20,∠BAC=90°。求证:四边形ABCD是平行四边形。 如图,在四边形ABCD中,∠BAC=∠BDC=90°,M、N分别是AD、BC的中点,求证:MN⊥AD. 如图,在四边形ABCD中,∠BAC=∠BDC=90°,M、N分别是AD、BC中点.求证MN⊥AD 如图,在四边形ABCD中,∠BAC=∠BDC=90°,M,N分别是AD,BC的中点,求证:MN⊥AD. 如图,四边形ABCD中,AB=AC=AD,∠BAC=40°,则∠BDC= 如图,已知在四边形ABCD中,∠A+∠B=180°,∠B 如图在四边形abcd中,∠A+∠B=180°∠A,=∠C判断四边形ABCD的形状并说明理由 如图,在四边形ABcD中,角BAc=角ADC=90度,AD=a,BC=b,AC=根号ab,求证:DC垂直BC