如图,四边形ABCD中,AD‖BC,∠ABC=90°,点E是DC的中点,过点E作DC的垂线交AB于点P,交CB延长线于M点F在线段ME上,且CF=AD,ME=MA.1)若∠MFC=120°,求证AM=2MB2)若∠FCM=40°,求∠APM

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 14:16:24
如图,四边形ABCD中,AD‖BC,∠ABC=90°,点E是DC的中点,过点E作DC的垂线交AB于点P,交CB延长线于M点F在线段ME上,且CF=AD,ME=MA.1)若∠MFC=120°,求证AM=2MB2)若∠FCM=40°,求∠APM
xT[k@+RPIfI#d'Ifw[|UR*^hKld]I999wfy!}ki=~<{gʵ~vkm?1p{3kZnM;{ <ό^M|l/w=`ҵWp$jGZog5Qc«g83̬t`')pЙ _t=G1GQLPB~@P~GĈq4"g"f=B&s&74 ,Fl>M

如图,四边形ABCD中,AD‖BC,∠ABC=90°,点E是DC的中点,过点E作DC的垂线交AB于点P,交CB延长线于M点F在线段ME上,且CF=AD,ME=MA.1)若∠MFC=120°,求证AM=2MB2)若∠FCM=40°,求∠APM
如图,四边形ABCD中,AD‖BC,∠ABC=90°,点E是DC的中点,过点E作DC的垂线交AB于点P,交CB延长线于M
点F在线段ME上,且CF=AD,ME=MA.
1)若∠MFC=120°,求证AM=2MB
2)若∠FCM=40°,求∠APM

如图,四边形ABCD中,AD‖BC,∠ABC=90°,点E是DC的中点,过点E作DC的垂线交AB于点P,交CB延长线于M点F在线段ME上,且CF=AD,ME=MA.1)若∠MFC=120°,求证AM=2MB2)若∠FCM=40°,求∠APM

题目有误,应为MA=MF,
1)连DM,DF
因为ME⊥CD,DE=CE
所以ME是CD的垂直平分线
所以MD=MC,DF=FC
因为CF=AD
所以CF=AD
因为MA=MF
所以△MCF≌△MDA
所以∠MAD=∠MFC=120°
因为∠BAD=90°
所以∠MAB=∠MAD-∠BAD=120-90=30°
因为∠ABC=90°
所以AM=2MB
 
2)因为MA=MF,AD=FD,MD为公共边
所以△MAD≌△MFD
所以∠ADM=∠MDF
因为△MCF≌△MDA
所以∠FCM=∠ADM=40°
所以∠ADF=2∠ADM=80°
因为AD∥BC
所以∠ADC+∠BCD=180°
所以∠FDC+∠FCD=180-∠ADF-∠BCF=180-80-40=60
因为FD=FC
所以∠FCD=∠FDC=30°
所以∠MCD=∠MCF+∠FCD=40+30=70°
所以∠FMC=90-70=20°
所以∠APM=∠FMC+∠ABM=20+90=110°