已知函数f(x)=1-2sin2(x+π/8)+2sin(x+π/8)cos(x+π/8).求      (1)函数的最小正周期    (2),函数的单调增区间        

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 01:55:22
已知函数f(x)=1-2sin2(x+π/8)+2sin(x+π/8)cos(x+π/8).求      (1)函数的最小正周期    (2),函数的单调增区间        
xU_kA* .fMл|_}DP 1çZ@cĐ`@^,I[3w(Kt_ٝr` fw~ٙ5vz4~[vV\Vd+ud pBIeZ/_\=o9W?7]I+РF*8ﭳ6ߝh<|-p4Z`,|cyltل$,8Iv„&g[M .Ma)bL3PI҄D;I'2)ԂYub 8UW ՆoY"7뷇W R~P*UeʄG,<%D!('@ [DEL a˛'pV;RNܬ#Q!@A-BB'!|᷁8в쬤x :zդ1'Au n D#RLGYg|=r:tCU>u{!p;-?&D1>o,#!6CDH)&2v=,˞NUe;/pJVd8SIQ vt-ϣ'Sg0^$6*9MV lOxV

已知函数f(x)=1-2sin2(x+π/8)+2sin(x+π/8)cos(x+π/8).求      (1)函数的最小正周期    (2),函数的单调增区间        
已知函数f(x)=1-2sin2(x+π/8)+2sin(x+π/8)cos(x+π/8).求      (1)函数的最小正周期    (2),函数的单调增区间                                                

已知函数f(x)=1-2sin2(x+π/8)+2sin(x+π/8)cos(x+π/8).求      (1)函数的最小正周期    (2),函数的单调增区间        
1-2sin^2(x+兀/8)=cos(2x+兀/4)
2sin(x+兀/8)cos(x+兀/8)=sin(2x+兀/4)
f(x)=cos(2x+兀/4)+sin(2x+兀/4)
=√2*[sin兀/4*cos(2x+兀/4)+cos兀/4*sin(2x+兀/4)]
=√2*sin(2x+兀/2)
T=2兀/2=兀
f(x)的单调增区间:
-兀/2/+2k兀≤2x+兀/2≤兀/2+2k兀
-兀/2/8+K兀≤x≤0+k兀
k属于Z

f(x)=1-2sin2(x+π/8)+2sin(x+π/8)cos(x+π/8)
=1-2sin (2x+π/4)+sin (2x + π/4)
=1-sin (2x + π/4)
最小正周期T=2π/2 = π
增区间:(即求sin (2x + π/4)的减区间
π/2 + 2kπ < 2x + π/4 < 3π/2 + 2kπ (k为整数)

全部展开

f(x)=1-2sin2(x+π/8)+2sin(x+π/8)cos(x+π/8)
=1-2sin (2x+π/4)+sin (2x + π/4)
=1-sin (2x + π/4)
最小正周期T=2π/2 = π
增区间:(即求sin (2x + π/4)的减区间
π/2 + 2kπ < 2x + π/4 < 3π/2 + 2kπ (k为整数)
即 π/8 + kπ < x < 5π/8 + kπ
所以增区间为(π/8 + kπ ,5π/8 + kπ)

收起

f(x)=1
题目有没有搞错?!

f(x)=1-2sin2(x+π/8)+2sin(x+π/8)cos(x+π/8)
=cos(2x+π/4)+sin(2x+π/4)
=√2[sinπ/4cos(2x+π/4)+cosπ/4sin(2x+π/4)]
=√2sin(π/4+2x+π/4)
=√2cos(2x)
函数的最小正周期 2π/2=π

全部展开

f(x)=1-2sin2(x+π/8)+2sin(x+π/8)cos(x+π/8)
=cos(2x+π/4)+sin(2x+π/4)
=√2[sinπ/4cos(2x+π/4)+cosπ/4sin(2x+π/4)]
=√2sin(π/4+2x+π/4)
=√2cos(2x)
函数的最小正周期 2π/2=π
函数的单调增区间 [kπ-π/2,kπ],k属于z

收起

化简为f(x)=1-sin2(x+π/8)
最小正周期T=2π/2=π
单调增区间(nπ+1/8π,nπ+5/8π)n为整数