在Rt三角形ABC中,∠C=90中;,AB=2√5,sinB=√5÷5,点P为边BC上一动点,PD‖AB,PD交AC于点D,连接AP设PC的长为X,三角形ADP的面积为Y ,当X为何值时,Y最大?并求出最大值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 00:20:16
在Rt三角形ABC中,∠C=90中;,AB=2√5,sinB=√5÷5,点P为边BC上一动点,PD‖AB,PD交AC于点D,连接AP设PC的长为X,三角形ADP的面积为Y ,当X为何值时,Y最大?并求出最大值
xRn@*Y*TX=cSY((ZI*4BDM(bCy n\ 7m͏naڎO~|Yw/Q\կނkj52="@2lbRKC**}i,k u@ "w19J TPL43U SOH J4T].dِ^:}<4 |.dZ.%GX&R_V ӧziÿ7non~ hi|6ymJJL_ g(%ESkm

在Rt三角形ABC中,∠C=90中;,AB=2√5,sinB=√5÷5,点P为边BC上一动点,PD‖AB,PD交AC于点D,连接AP设PC的长为X,三角形ADP的面积为Y ,当X为何值时,Y最大?并求出最大值
在Rt三角形ABC中,∠C=90中;,AB=2√5,sinB=√5÷5,点P为边BC上一动点,PD‖AB,PD交AC于点D,连接AP
设PC的长为X,三角形ADP的面积为Y ,当X为何值时,Y最大?并求出最大值

在Rt三角形ABC中,∠C=90中;,AB=2√5,sinB=√5÷5,点P为边BC上一动点,PD‖AB,PD交AC于点D,连接AP设PC的长为X,三角形ADP的面积为Y ,当X为何值时,Y最大?并求出最大值
因为,sinB=√5÷5 ,AB=2√5
由公式:sin²B+cos²B=1 ,(其中,B为锐角)
所以,cosB=2√5÷5
在Rt△ABC中,
sinB=AC/AB,cosB=BC/AB
所以,AC=AB*sinB=(2√5)*(√5÷5)=2 ,BC=AB*cosB=(2√5)*(2√5÷5)=4
因为,PD‖AB
所以,CD/AC=PC/BC
所以,CD/2=x/4 ,即:CD=x/2
所以,AD=2-x/2
所以,y=(1/2)*(2-x/2)*x=(-1/4)x²+x=(-1/4)*(x-2)²+1 (0

y=1/2*x*(2-1/2*X)
x=2,ymax=1