lim[(x-tanx)/x^2sinx](x趋向于0)用洛必达法则
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 08:33:34
x)̍֨-I̫ԯ3*̫ըx鄉Ovh>ٖOطO;f$铧QΆ2;x6NL3@v>ٽWnz5ͰE5c
}Lqi5-NM3j0:A"@%Pd8P|]C}c<;hxڀ9 } `u;dXdS-x6c=HDg@^NdW; @
lim[(x-tanx)/x^2sinx](x趋向于0)用洛必达法则
lim[(x-tanx)/x^2sinx](x趋向于0)用洛必达法则
lim[(x-tanx)/x^2sinx](x趋向于0)用洛必达法则
lim(x→0)[(x-tanx)/x^2sinx] (用等价无穷小代换)
=lim(x→0)(x-tanx)/x^3 (0/0,用洛必达法则)
=lim(x→0)(1-sec^2x)/(3x^2)
=lim(x→0)-tan^2x/(3x^2) (用等价无穷小代换)
=lim(x→0)-x^2/(3x^2)
=-1/3
=lim[(x-tanx)/x^3]=lim[1-secx^2/3x^2]=lim[-tanx^2/3x^2]=lim[-x^2/3x^2]=-1/3
答案是-1/3 你的答案错了