求下列函数的导数 y=(1+x^2/1-x^2)^2y=【(1+x^2)/(1-x^2)】^2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 14:52:41
求下列函数的导数 y=(1+x^2/1-x^2)^2y=【(1+x^2)/(1-x^2)】^2
xRMO@+!aiڤ=!BhbQ &l1q_p[%5O^3y3[Rm\c..k@b1H)LX@j@z&^LP߽pwh^ˢ#IK/jc=Y-qqIh0V CF)uIk34chsXD-6F7\D!&i 9Azc8=^`"h%l G $9Jx λj _fkpNk=Żg$Vi, A񆤝$Ih_m F~ؠl7SfNQzxxc^

求下列函数的导数 y=(1+x^2/1-x^2)^2y=【(1+x^2)/(1-x^2)】^2
求下列函数的导数 y=(1+x^2/1-x^2)^2
y=【(1+x^2)/(1-x^2)】^2

求下列函数的导数 y=(1+x^2/1-x^2)^2y=【(1+x^2)/(1-x^2)】^2
首先记住公式[f(g(x))]'=f'(g(x))*g'(x)
然后设a=(1+x^2)/(1-x^2),y=f(a)
y=f(a)=a^2
f'(a)=2a=2(1+x^2)/(1-x^2)
然后设b=1-x^2,a=g(b)
a=g(b)=(2-b)/b=2/b-1
g'(b)=-2/b^2=-2/(1-x^2)^2
b'=-2x
a'=[g(b)]'=g'(b)*b'=[-2/(1-x^2)^2]*(-2x)=4x/(1-x^2)^2
y'=[f(a)]'=f'(a)*a'=[2(1+x^2)/(1-x^2)]*[4x/(1-x^2)^2]=8x(1+x^2)/(1-x^2)^3
所以y'=8x(1+x^2)/(1-x^2)^3

y′
=2[(1+x^2)/(1-x^2)][(1+x^2)/(1-x^2)]′
=2[(1+x^2)/(1-x^2)][(1+x^2)′(1-x^2)-(1+x^2)(1-x^2)′]/(1-x^2)^2
=2[(1+x^2)/(1-x^2)][2x(1-x^2)+2x(1+x^2)]/(1-x^2)^2
=8x(1+x^2)/(1-x^2)^3。...

全部展开

y′
=2[(1+x^2)/(1-x^2)][(1+x^2)/(1-x^2)]′
=2[(1+x^2)/(1-x^2)][(1+x^2)′(1-x^2)-(1+x^2)(1-x^2)′]/(1-x^2)^2
=2[(1+x^2)/(1-x^2)][2x(1-x^2)+2x(1+x^2)]/(1-x^2)^2
=8x(1+x^2)/(1-x^2)^3。

收起