求不定积分∫根号下(x^2-a^2) dx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 10:26:24
求不定积分∫根号下(x^2-a^2) dx
xT=K@+/4-G4@i4nRu8B4 ũ CdSͿ%K~Xmgv1݄5 .`gk5 m:x:<%撶cyr7 '}Sު֠4^9'.Ss J9>˞;-<_} ?8@}+#t.aj8]%rA$TY ^-|TԸ#.FrIZ]D9Gk'ߔscŏnFɧDЪ892@L.oIϖKb%}!fIʜ;QoT6ˊ/ ʈ&3GhxW]y[Ub $6m9` +cvP>y:3daȖ?@

求不定积分∫根号下(x^2-a^2) dx
求不定积分∫根号下(x^2-a^2) dx

求不定积分∫根号下(x^2-a^2) dx
答案:(x/2)√(x² - a²) - (a²/2)ln|x + √(x² - a²)| + C
令x = a * secz,dx = a * secztanz dz,假设x > a
∫ √(x² - a²) dx
= ∫ √(a²sec²z - a²) * (a * secztanz dz)
= a²∫ tan²z * secz dz
= a²∫ (sec²z - 1) * secz dz
= a²∫ sec³z dz - a²∫ secz dz
= a²M - a²N
M = ∫ sec³z dz = ∫ secz dtanz
= secztanz - ∫ tanz dsecz
= secztanz - ∫ tanz * (secztanz dz)
= secztanz - ∫ (sec²z - 1) * secz dz
= secztanz - M + N
2M = secztanz + N => N = (1/2)secztanz + N/2
原式= (a²/2)secztanz + a²N/2 - a²N
= (a²/2)secztanz - (a²/2)∫ secz dz
= (a²/2)secztanz - (a²/2)ln|secz + tanz| + C
= (a²/2)(x/a)[√(x² -a²)/a] - (a²/2)ln|x/a + √(x² - a²)/a| + C
= (x/2)√(x² - a²) - (a²/2)ln|x + √(x² - a²)| + C

∫√(x^2-a^2)dx=(x/2)√(x^2-a^2)+(a^2/2)ln[x+√(x^2-a^2)]+C