f'(x)=sin(x-1)^2 f(0)=0 求∫ (0,1) f(x)dx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 01:32:12
f'(x)=sin(x-1)^2 f(0)=0 求∫ (0,1) f(x)dx
x)KSרд-Ө5Ԍ3RH0д5PxQj CMXfJMR>I lHi';V=_wg<\ź}a&A\#+% f u󋣍 ҵFZ L}#]C}-0ePW=kij;@4)8"I"HTUX!ZτZz8#}mC} -$VTCVB Lѭ6i25*05ɂHSF 16`eMy6c=qtg><HO՚

f'(x)=sin(x-1)^2 f(0)=0 求∫ (0,1) f(x)dx
f'(x)=sin(x-1)^2 f(0)=0 求∫ (0,1) f(x)dx

f'(x)=sin(x-1)^2 f(0)=0 求∫ (0,1) f(x)dx
做个简单点的吧,设f'(x)=[sin(x-1)]^2
f(x)=∫f'(x)dx
=∫[sin(x-1)]^2dx
=∫[sin(x-1)]^2d(x-1)
=∫{1-cos[2(x-1)]}/2*d(x-1)
=(x-1)/2-1/4*sin[2(x-1)]+C
f(0)=-1/2-1/4*sin(-2)+C=0
=> C=1/2-1/4*sin2
f(x)=x/2-1/4*sin[2(x-1)]-1/4*sin2
∫ (0,1) f(x)dx
=∫ (0,1) {x/2-1/4*sin[2(x-1)]-1/4*sin2}dx
=(0,1) {x^2/4+1/8*cos[2(x-1)]-x/4*sin2}
={1/4+1/8-1/4*sin2}-{0+1/8*cos2-0}
=(3-2sin2-cos2)/8

如果是sin[(x-1)^2]就没法做