函数y=(sinx+1)/(cosx-2)的最大值是

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 01:26:33
函数y=(sinx+1)/(cosx-2)的最大值是
xQNP%D*)&¸Q".hʣEh"@Aܶ+LXʍ]49sfF@|K rݨṭHt91qz%AҐ>s1 ^ s%D`t .N+:d2pQk3ДDw3cV6'<\~*DV\ly_E`NW> }mFp45IID;䄍HscPZZcQ3ރѪJ/zwhQf@C3!8WE\t[#28S$A*(0`>5R/{LjCidC?1tD`I 3 lFxdnNm7$ӠܣmHkF>DK[ٚp2Ɓh'w#el+10c5Hޥ7pTF="FqL$b\B ꘰Iq-Z<$v< an=׳^s'tpc

函数y=(sinx+1)/(cosx-2)的最大值是
函数y=(sinx+1)/(cosx-2)的最大值是

函数y=(sinx+1)/(cosx-2)的最大值是
y=(sinx+1)/(cosx-2)
ycosx-sinx=1+2y
根号(y^2+1)cos(x+φ)=1+2y
所以cos(x+φ)=(1+2y)/根号(y^2+1)
所以|(1+2y)/根号(y^2+1)|≤1
3y^2+4y≤0
-4/3≤y≤0
所以y最大值是0

整理一下,把sinx放到一边,然后两边同时平方,化为关于cosx和y的函数,要使cosx存在,即要判别式大于等于零,就可以求出y的最大值了。
或者用万能公式化为tg的函数再利用判别式也行,不过这两种方法好像都很麻烦,几年没做这种题了,一些巧妙的方法都忘了。...

全部展开

整理一下,把sinx放到一边,然后两边同时平方,化为关于cosx和y的函数,要使cosx存在,即要判别式大于等于零,就可以求出y的最大值了。
或者用万能公式化为tg的函数再利用判别式也行,不过这两种方法好像都很麻烦,几年没做这种题了,一些巧妙的方法都忘了。

收起